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Abstract 
With the increased use of modelling techniques has come the desire to use models as a programming 
language as part of a Model Driven Architecture.  This desire can now be satisfied by exploiting XMI for 
model interchange and XSLT for model transformation. However the current transformation techniques are 
far removed from modelling techniques. We therefore describe a graphical transformation language, which 
involves only minor extensions to UML but constitutes a high level language for transformations. 

1 Introduction 
The Object Management Group (OMG) has issued a Request For Proposal [16] for a Query / Views / 
Transformations (QVT) language to exploit the Meta-Object Facility (MOF) [15], which as from version 
2.0 should share common core concepts with the Unified Modeling Language (UML) 2.0 [17]. The initial 
submissions of 8 and first revised submissions of 5 consortia1 have been made, and somewhat surprisingly, 
only one of them [18] uses a partial graphical representation and another [11] just a graphical context for 
their language. 

This paper describes independent work to provide an Open Source tool to support the OMG’s Model 
Driven Architecture (MDA) initiative [13]. A primarily graphical transformation language is described that 
extends UML through the use of a transformation diagram to define how an input model is to be 
transformed into an output model. This work has much in common with two of the QVT proposals [12] 
[18], and it is hoped that it is not too late for some of the ideas in UMLX to influence revised QVT 
proposals. 

Proprietary file formats once created significant impediments to sharing or re-use of information between 
software tools. Fortunately, the advent of XML [20] is steadily eroding these barriers, and the ease with 
which XML can be read and written using the Java DOM [19] support makes XML a natural choice for 
new applications. When information is stored in an XML format, albeit with a proprietary schema, it is 
possible to deduce the schema and gain access to the information content. The advent of XSLT [21] has 
made transformation between XML formats relatively easy, so that as standard XML formats are agreed, 
proprietary or legacy formats can be accommodated by translators. 

Both XML and XSLT, which is an XML dialect, are effective compromises between man and machine 
intelligibility, but as compromises they leave plenty of scope for more user-friendly representations. There 
are therefore a variety of data modelling tools, many based on UML, that provide greater rigour in the use 
of an underlying XML representation, increasingly exploiting the stronger disciplines of XMI [14]. There 
are, however, few tools that hide the impressively compact and sometimes dangerously terse underlying 
XPath representation. We will now describe one such tool and its associated language: UMLX. 

Before we review the MDA and its supporting transformations in Section 3, we introduce the UMLX 
concepts in Section 2, where a simple example demonstrates that transformations are applicable for 
specification of conventional program execution as well as for program compilation. In Section 4, we go a 
stage further and discuss the use of transformations to specify the UMLX compiler compilation. We then 
summarize the current compiler status and future plans in Section 5. Finally we discuss related work. 

2 UMLX 
UMLX uses standard UML class diagrams to define information schema and their instances, and extends 
the class diagram to define inter-schema transformations. We will therefore use as much standard practice 
as possible in our introduction of the additional UMLX transformation concepts. We describe an address 
book with email and telephone contact details as a running example, as we move from the hopefully 
familiar territory of information modelling, on through transformations at the program-level, via the 
compiler-level to the compiler-compiler-level. 

                                                        
1 The author is not directly associated with the OpenQVT consortium of which his employer, Thales 
Research and Technology (UK) Limited as part of Thales, is a member. 
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In this section we just introduce the UMLX extensions to UML. The very important area of compiler 
transformations is deferred until Section 3 and the reader is referred to [9] for a presentation of the standard 
UML to RDBMS example using UMLX. 

2.1 Schema Definitions 
An information model is defined using a 
schema, which uses the sub-set of UML class 
diagram syntax appropriate to information 
modelling. This syntax is summarized in Figure 
2.1. 

In Figure 2.2 we model an AddressBook with 
many Contacts for each of many Entrys 
using composition relationships. The two types 
of Contact are modelled using inheritance of 
Phone and Email from the abstract Contact. 
The national, regional and local parts of a phone 
number are modelled using distinct objects. The 
national dialling codes are modelled using one 
object per country within the AddressBook, so 
that the phone number references the appropriate 
country object using a navigable association. All 
other information, such as the name of the 
AddressBook owner, is modelled using 
attributes. 

2.2 Schema Usage 
A schema defines all possible information sets that comply with the information model. A specific 
instantiation or usage of a schema may be defined graphically using instances. Figure 2.3 shows an address 
book instance with just one entry with two contacts. 

2.3 Schema to Schema Transformation 
Instances of schemas may be maintained by a wide variety of often proprietary tools, which provide 
internal capabilities to transform to external formats, but generally prevent direct access to the internal 

 

Figure 2.3 Example Instance 

 

Figure 2.1 Schema Syntax 

 

Figure 2.2 Example Schema 
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representation. However, when a standard XML format is used we may look to start applying custom 
transformations. 

The UMLX extensions that 
support transformations are 
summarized in Figure 2.4. 

It is convenient, though not 
necessary, to draw 
transformations with inputs 
on the left and outputs on the 
right so that we can refer to 
the left hand side (LHS) as 
the pre-transformation or 
input context and the right 
hand side (RHS) as the post-
transformation or output 
context. 

A hierarchical transform has 
an Invocation context 
established by binding LHS 
contexts to input ports and 
RHS contexts to output ports.  
The Input and Output 
syntaxes define how these ports are in turn associated with the internal LHS and RHS contexts. The 
Preservation, Evolution and Removal syntaxes define the contribution of an LHS construct to the RHS. The 
LHS is always unchanged. We hope that the usage of these syntaxes will adequately correspond to intuition 
as we progress our running example. More details are given in [8]. 

A too frequent 
problem with 
address books is the 
requirement to 
update phone 
numbers to adjust to 
the changed policies 
of the phone 
companies. A 
transformation to 
change all UK 
numbers with the 
regional code 111 to 
10111 may be 
defined in UMLX as 
shown in Figure 2.5. 

At the extreme top 
left and right hand side of the diagram are two port icons that define the external interface of the 
transformation. The in port accepts an AddressBook, or an instance of some class derived from 
AddressBook, with the unidirectional arrow providing a visual indication that the source may be read but 
not updated. The out port similarly handles an AddressBook, and the bidirectional arrow provides a 
visual reminder that the write-only result is shared and so may be updated by concurrent non-conflicting 
matches of this and other transformations. 

The diagram comprises two schema instantiations, the one on the left connected to the input defines a 
structure to be discovered in the input model, each of whose instances trigger the transformation to produce 
the schema instantiation on the right hand side. A structure is an arrangement of objects with connectivity, 
multiplicity, type, value and other constraints. (We refer to structures rather than patterns to avoid 
confusion with the more abstract concept used in the pattern community. The concepts are closely related; 
structures form part of the specification of a re-usable solution to a problem in the transformation context, 
whereas a pattern concerns a recurring problem in a more general context.) 

A distinct structure match is detected for each matching set of objects in the input model, which in the 
example means a match for each contact whose national name is UK, and whose regional number is 111. 

Figure 2.4 Transformation Syntax 

Figure 2.5 Explicit Phone Number Transformation 
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The explicit preservation between the two AddressBooks provides an implicit preservation of its 
composed contents. Implicit preservation or removal recurses until an explicit transformation operator 
dominates, as for the matched Phone contact. The old regional code is excluded from the output by the 
removal, and replaced by the evolution of a new regional code with the changed value. 

The interpretation of cardinalities in a transformation deserves clarification. In a schema, cardinalities 
define the bounds against which the application elements of a particular schema instance may be validated. 
In a transformation, the cardinalities represent the multiplicities that must be satisfied by each match; there 
is a distinct match for each possible set of correspondences between transform and application elements  
for which all cardinalities are fully and maximally satisfied. 

We may therefore interpret the left hand side match as  

given a book of base-type AddressBook 
 for-each person of base-type Entry in book.person 
  for-each contact of base-type Phone in person.contact 
   for-each region of base-type RegionalCode in contact.regional 
    for-each country of base-type InternationalCode in book.country 
     if country is referenced by contact.national 
      if country.name is ’UK’ 
       if region.number is ’111’ 
        <match found at book,person,contact,region,country> 
and the transformation action in the context of each match as 

within the context of the preserved matched contact 
 remove the old regional child object 
 create a new regional child object of type RegionalCode 
  with number set to ‘10111’ 
When a model is known to comply with its schema, there are many optimizations that can be applied: 

� Only the Phone type needs validation, since it is the only derived type in the transformation. 
� The region loop is redundant since its multiplicity is exactly one. 

The sequencing of the loops is also subject to optimization. For instance, if an implementation has a fast 
look-up key for country, that loop and its conditional could be performed first. Conversely, we may analyze 
this and other transforms and choose to synthesize an implementation in which there is a fast look-up for 
country. 

The relationship multiplicities determine the 
complexity of the matching, and in this 
example all multiplicities have been unity. 
Other multiplicities, such as zero, which 
requires an absence of matches, or more than 
one which may match combinatorially, are 
discussed in [8]. When multiplicities are 
applied to hierarchical transformations, 
predicates and sub-matches are supported. 

Consistent resolution of overlapping matches 
between concurrent transforms is made 
possible by the concept of an evolution 
identity. Each evolved RHS transformation 
entity has a formal signature determined by the 
set of evolutions from which it evolves. Each 
of these evolutions may in turn be associated with a set of LHS entities. The correspondence of actual LHS 
instances in the discovered match to the LHS instances in the formal signature defines the identity of the 
actual RHS entity. Again more details may be found in [8]. 

The example application can be made a little more useful by defining the additional schema for changes 
shown in Figure 2.6. We may now seek to apply a batch of AddressRegionChanges and/or 
EmailChanges. An individual AddressRegionChange may be realized by the slightly changed 
transformation, shown in Figure 2.7 that now takes two inputs, and matches where common 
<<primitive>> String values are found. A match therefore occurs for the combination of each Phone 
contact that matches an AddressRegionChange. 

 

Figure 2.6 Contact Changes Schema 
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This transformation may be invoked hierarchically as shown in Figure 2.8. The two incoming models, an 
address book and a change list, are merged to produce an updated address book. 

The outer transform finds a distinct match for each Change, and attempts to apply both the 
ApplyAddressRegionChange and the ApplyEmailChange sub-transformations. However the use of 

a derived input type, AddressRegionChange, in ApplyAddressRegionChange ensures that only the 
transformation applicable to the actual Change progresses. 

Having modelled an address book and a mechanism for automating changes, we can adapt to changes more 
easily. When a standard AddressChangeML dialect emerges, the update code can be remodelled on the new 
standard, or the change mechanism revised to define a transformation from the new change standard. XML 
files can then supersede or at least augment informal change of address emails or cards for address change 
notification. A transform may similarly be created to rescue our address book following an upgrade to a 
tool that uses a new standard AddressBookML. 

3 The Model Driven Architecture 
In support of the MDA, we want to transform portable Platform Independent Models (PIM) into efficient 
Platform Specific Models (PSM). 

3.1 PIMs, PSMs and PDMs 
The models presented so far have been PIMs; they only specify required functionality. Their persistent 
representation may use a database, an XML file, or a proprietary format. Their functional implementation 
may use database queries, XML transformations or proprietary code. They may therefore be simulated, 

 

Figure 2.7 ApplyAddressRegionChange Transformation 

 

Figure 2.8 Compound Transformation 
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using whatever representation and implementation a simulator chooses. However, to produce a practical 
application, they must be converted to PSMs that incorporate extra platform information. It has been 
common practice to either produce PSMs in the first place and thereby lose portability, or to redraw the 
PIMs as PSMs and thereby create a disconnect between design and implementation models. 

The additional context is provided by a Platform Description Model (PDM), which should also be re-usable 
since we may require many different PIMs to operate in the same context. The PDM may comprise 
descriptions of 

� component/Operating System/instruction set capabilities 
� language/assembler type systems 
� driver/hardware interfaces 
� communication protocols 
� network connectivity 
� library resources 
� tools 

Neither PIM nor PDM should be modified to field a 
specific PIM to a specific PDM, so we need a further 
model in which to capture the mapping requirements 
unique to a particular PIM and PDM combination. The 
transformation language that can implement the merge 
of PIM and PDM to produce a PSM is a sufficient 
topic for this article, so we will just suggest that after 
some elaboration, a hierarchy of UML Deployment 
Diagrams may fulfil this role as shown in Figure 3.1. 

Two re-usable models must be merged and 
transformed under control of the third. There are many 
different problems that must be resolved: 

� alignment of specification attribute types to the implementation type system 
� reification of compositions and associations 
� selection, parameterization and interfacing of library elements 
� partitioning of specification regions to execution units 

    (classes or components or processes or processors or …) 
� selection of communication policies between execution units 
� selection of scheduling policies for execution units 
� activation of communication policies between execution units 
� activation of scheduling policies for execution units 

Code generation may then be performed in favoured language(s). 

The above list is incomplete for conventional applications, and we should add any aspects that may be of 
concern to particular applications 

� establishment of an error handling policy 
� introduction of fault tolerant redundancy 
� distributing persistence 
� validation of throughput capabilities 
� dynamic or static load balancing 
� array distribution and cache coherence 

There are clearly far too many different problems to solve all at once, so a practical tool must modularize 
them so that they are resolved one at a time, with as little interaction as possible. What is shown in Figure 
3.1 as a single transformation is in practice a compound transformation, comprising many sequential, 
concurrent and hierarchical sub-transformations with many intermediate pivot models. 

Some of these problems may be resolved by patterns, with a transformation library supplying established 
solutions that can be applied in response to the problem primarily defined by the PIM, the context primarily 
defined by the PDM and extra forces perhaps in the Deployment Model. The compound transformation 
must therefore adapt, in some cases through automatic recognition of PIM concepts that must be 
eliminated. However, it is unlikely that a satisfactorily efficient conversion can be fully automated, so 

Platform
Independent

Model

Deployment
Model

Platform
Description

Model

Platform
Specific
Model

Transformation

Figure 3.1 MDA Models 
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iteration to allow elaboration of the Deployment Model with sufficient guidance will be essential. This will 
require dynamic activation of analysis and diagnostic transforms to assist the system designer. 

3.2 Compiler Transformation 
A number of categories of compiler transformations have been listed above. Some rather more obvious 
examples are provided by reification of specific UML concepts. 

� Translation of Abstract classes to Interfaces in Java or pure virtuals in C++ 
� Translation of State Machine States and Events into Classes 
� Translation of UML relationships into Operations and Attributes 
� Translation of a UML model to an RDBMS model [9] 

We will give one simple example. UML diagrams comprise boxes for concepts with lines for relationships 
between them. A few boxes correspond directly to language constructs such as classes, but for the other 
boxes and lines, it is necessary to find an appropriate implementation approach. An example of one form of 
relationship without a direct language counterpart is a composition. 

Whereas in the earlier examples we were considering the program level where execution involves instances 
of application concepts such as AddressBook and Contact, we now consider the compiler level where 
compilation involves instances of language concepts such as Class and Composition. 

The composition shown in Figure 3.2 may be transformed into a 
Sequence(Contact) member variable in AddressBook, where 
Sequence() is the OCL collection type. Further transformations, 
close to code generation, are required to convert it to the appropriate 
Java, C++ or VHDL equivalent. 

We do not normally want to specify a separate transformation for each 
composition individually; rather the same transformation policy may 
form part of a package of Object Oriented transforms and can be 
applied to all compositions, so we specify a transformation on the 
UML meta-model:2 

Here the left-hand side defines 
the structure involving the 
Association that represents 
the composition line, the two 
Propertys that represent each 
line end and the two Classes 
within a Package. In UML, the 
distinction between associations 
and compositions is made by the 
graphical attributes on the line 
ends, so we apply constraints to 
indicate that one end should have 
a composite diamond and the 
other none as its decoration. 

Wherever this structure is found, 
the transformation specifies that 
the Association and kid 
Property be removed, and that 
the type of the parent property 
be changed to Sequence of the 
child type. 

This transform is far from 
complete, since any practical 
implementation of a composition 
must also provide support code to ensure that the child and its contents are appropriately constructed and 
maintained. 

                                                        
2 Specific classes or compositions may be transformed by additional constraints on the class names. 

 

Figure 3.2 UML 
Composition 

 

Figure 3.3 Composition Transformation 
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The transform is therefore just a part of the support necessary for the UML Composition concept, which is 
just one of many concepts in need of transformation.  It also forms just one of a number of passes; further 
transformations will be necessary to progress the OCL concepts into a particular programming language. 

4 UMLX Compiler 
Use of UMLX enables the problem of model 
transformation that lies at the heart of MDA to be 
expressed using modelling technology. The meta-
models for each of the input and output models are 
used by the meta-model of the transformation model. 
This transformation meta-model is compiled to 
produce the transformation model (or program) that 
is executed by some transformation engine to realise 
the required transformation. 

XML technology is appropriate for transfer of 
models between tools and transformation engines. 
The transformation engine may then be realised 
using any technology for which XML import and 
export are supported, and a transform compiler is 
available. 

An editor for UMLX has been implemented using 
the GME [7] meta-modelling tool, and a capability 
has been added to support XMI export. 

A compiler for UMLX is being defined using UMLX 
meta-models, and manually implemented using 
XSLT, or rather NiceXSL3. Once this 
implementation is operational, it should be possible 
to use it as a bootstrap to regenerate itself from the 
UMLX meta-models. 

Implementation of the compiler using XSLT is 
particularly straightforward since XML models can be imported directly; a remarkably small 
transformation engine just interprets the activities encoded in the transformation model. 

Once code generators for C++ or Java have been modelled, the transformation compiler can generate more 
efficient or more portable code to implement transformations. And since the UMLX compiler is defined in 
UMLX, the transformation compilation can be regenerated with similar benefits. 

Thereafter, development of optimizations described in Section 5 may proceed in UMLX, without further 
recourse to XSLT.  Once these optimizations are in place, it will be possible to build an efficient custom 
compiler from a set of user-selected transformations. This custom compiler need only be regenerated when 
the meta-models are changed. 

More significantly, it will be possible for a custom compiler to be developed, based on the re-usable 
transformations, and adapted for unique application requirements. This requires a transformation library for 
the various stages of transformation from UML specification to implementation. 

Looking further ahead, if compilers and synthesis tools are restructured as transformation engines, the 
increasingly powerful but specialized algorithms that they contain may be exposed for similar intervention. 

It is the aim of the Generative Model Transformer (GMT) project at Eclipse to provide an Open Source 
transformation tool and a library of transformations so that this all becomes possible. 

The UMLX compiler, in its current bootstrap state, comprises over 100 diagrams, so it is clearly 
inappropriate to present them all here. We will therefore just present two diagrams to demonstrate the need 
to support multiple inputs, multiple schema, workflow and hierarchical transformations, and to introduce 
the UMLX usage of multi-objects and inheritance. 

                                                        
3 NiceXSL is a more conventional textual representation for XSLT. Translators to and from XSLT are 
available from http://www.gigascale.org/caltrop/NiceXSL. 
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Figure 4.1 MDA Meta-Models 
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4.1 Transformation Compilation Example 
The top level diagram of the UMLX compiler, shown in Figure 4.2, demonstrates the need for multiple 
inputs with intermediate pivot models. The two inputs comprise the schema defining the data meta-models, 
and the transformations between these meta-models. Two intermediate pivot models are produced by 
annotating the input models with derived information to simplify the subsequent compilation activity. 

One important part of the schema annotation pass is to attach a transitive list of all base classes to each 
class, so that subsequent tests for inheritance and name visibility can be made without repeated traversal 
and resolution of name occlusion within the inheritance hierarchy. 

The complexities of multiple inheritance require the use of two passes, first to identify the base classes and 
then generating the annotations describing them.  Figure 4.3 shows the main recursion to gather another 
layer of base classes with respect to a new work-list of as-yet-unanalysed base classes, and an old work-
list of already-analysed base classes, all within the context of a particular schema. (The recursion is started 
with an empty old list, and a new list containing just the class to be analysed.) 

UML multi-objects are used for the work-lists, and so the left hand side may be read as 

for each arc of base type Inheritance in schema 
  for which base at arc.source has not yet been analysed 
  and for which derived at arc.target has yet to be analysed 
    <generate a match response for base> 
The 0 multiplicity on elements of the incoming old work-list requires the base match to be absent from 
the already-analysed work-list, and so avoids revisiting multiply inherited bases. 

The 1 multiplicity on elements of the incoming new work-list requires the target match to be present in 
the as-yet-unanalysed work-list. 

This is a multi-pass transformation, and so the centre of the diagram, which we may refer to as the middle 
side acts as the right hand side of the first pass, and the left hand side of the second. The middle side directs 
that a new new work-list be evolved (and shared across all concurrent matches) so that each match 
contributes its newly found inheritance source to the work-list. The preservation of incoming old and 
new work-lists as the middle old work-list, with redundantly explicit 1 to 1 multiplicities, directs that for 

 

Figure 4.2 Transformation Compilation 

 

Figure 4.3 GatherYetMoreBaseClasses 
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each incoming work-list each element is preserved in the resulting work-list, and that the resulting work-list 
contains exactly one copy of each incoming element. There is therefore a merge, with removal of 
duplicates. 

Once the left hand side to middle side sub-transformation is complete, the middle side to right hand side 
can progress by invoking a recursive transform. The recursion involves two distinct cases and so it is 
convenient to define and invoke an abstract transformation from which the distinct cases derive. 

Invocation of the abstract transformation 
invokes all the derived transformations 
shown in Figure 4.4. We have just seen 
that GatherYetMoreBaseClasses 
matches all additional base classes. 
However, if there are no base classes there 
will be no LHS matches and consequently 
no middle side from which to recurse. It is 
therefore necessary for GatherNoMoreBaseClasses to match at the end of the recursion.  This simpler 
case differs from  Figure 4.3 through specification of zero for the Schema to Inheritance multiplicity, 
and use of  the merged work-lists as the bases result without recursion. 

The example just presented is a compromise between identifying a simple enough part of the compiler to be 
presented in isolation, while showing sufficient complexity to reflect real problems. There are parts of the 
compiler that are significantly more complicated and the author regrets that he was unable to program these 
areas correctly first time in XSLT, and as a result has engaged in a distressing amount of empirical 
development. As the UMLX compiler has progressed, it has been possible to exploit visual symmetries 
within UMLX diagrams to make complex relations easier to understand, and with the ability to machine 
check the validity of each drawn relationship against a meta-model, UMLX now enables subtle XPath 
expressions to be constructed with far greater predictability and will soon support fully automated 
generation. The full set of UMLX diagrams for the UMLX compiler and executor may be found in [10]. 

5 Current Status and Future Work 
An editor for UMLX has been configured and most of a bootstrap compiler has been designed using 
UMLX and implemented in NiceXSL. This already shows useful ability to validate UMLX designs and 
generates XSLT that successfully applies a concurrent and sequential transform hierarchy to models 
provided that any OCL expressions are kept simple. 

The main priority is to raise the functionality level to the point where the bootstrap compiles its own design 
to produce a viable compiler. Progress can then be made on the compiler and on a library of standard 
transformations to support at least MDA. Compiler work will involve 

� single transform optimizations that exploit properties of schemas to improve the speed of structure 
matches, and generate code more efficiently 

� concurrent transform optimizations that sequence matches to maximize the sharing of partial match 
contexts exploiting fast indexing approaches 

� sequential transform optimizations to eliminate overheads by combining transforms and sharing 
intermediates 

� code generation to Java, C++ to improve the speed of structure matches, and generate code more 
efficiently. 

This should produce an increasingly viable compiler for XMI to XMI or text transformations that may then 
be integrated as an additional code generator behind configurable UML tools. 

In parallel with this, work on the basic MDA tool box is needed to support 
� type resolution 
� processor allocation 
� component configuration 
� performance assessment 
� common patterns 
� etc. etc. 
� code generation to various implementation languages (C++, Java, SQL, XML, VHDL, …). 

 

Figure 4.4 Transformation Inheritance 
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It is hoped that UMLX can provide a graphical presentation and a QVT framework in which research teams 
can make their unique contributions by complementing rather than competing with the achievements of 
others. 

6 Related Work 
Presenting transformations in a graphical style highlights the very close relationship with work on Graph 
Transformations [4][5]. The UMLX concepts of Preserve, Evolve, Remove correspond directly to Keep, 
Add and Delete, and so Single or Double Push Out representations of UMLX diagrams are easily derived, 
where they exist. The Graph Theory work provides a solid foundation upon which proofs of transformation 
optimisations can be based, and an identification of the conditions that must be satisfied by reversible 
transformations. It is clear that potentially useful transformations cannot be reversed if they involve many 
to one mappings or if they destroy cross-linking edges as a graph is transformed into a tree. Characterising 
UMLX as either SPO or DPO is a matter for further research, since the discipline of evolution identities 
may avoid some limitations of SPO, but the second class treatment of arcs prohibits categorisation as DPO. 

Gerber et al [6] have experimented with a variety of different transformation languages, and while 
favouring XSLT, they clearly have their reservations as their code became unreadable. Their experiences 
have influenced their QVT proposal [12], which we feel is not dissimilar to a textual representation of 
UMLX. Their concept of tracking before/after instances to correlate multiple transformations is subsumed 
by an evolution identity in UMLX; the latter is a natural consequence of the graphical syntax, whereas the 
former is a little untidy. 

The QVT partners’ submission [18] draws an interesting distinction between bi-directional mappings and 
uni-directional transformations. Their LHS and RHS graphics is similar to UMLX, but without the 
multiplicities, and they rely on text to define the relationship between LHS and RHS. 

The Compuware and Sun joint submission [11] uses graphics to show the context of their transformation, 
which is then defined textually in a very declarative and reversible style. It is not clear how irreversible 
transformations can be represented. 

The ISIS group at Vanderbilt has pursued the concepts of meta-modelling through the GME tool [7]. A 
preliminary paper on a Graphical Rewrite Engine [1] inspired the development of UMLX. The evolution to 
GReAT is described in [2] together with a good discussion on the significance of cardinalities in a UML 
context. GReAT is similar to UMLX, but lacks a clear distinction between LHS and RHS. Perhaps the 
main difference is one of emphasis. GReAT is concerned with simple compilation to an efficient 
transformation, with transformation compilation and implementation directly implemented in C++. UMLX 
is more concerned with specifying the required transformation, using UMLX to specify both the 
compilation and the execution of the transformation. UMLX will therefore be very slow until the UMLX 
specifications for C++ code generation and optimization are in place. Since UMLX is declarative, with a 
clear LHS/RHS distinction, there should be greater scope for inter-transform composition and optimization 
of UMLX. 

The underlying philosophy of UMLX is identical to ATL [3]. Both seek to provide a concrete syntax for a 
consistently meta-modelled abstract syntax that should evolve towards QVT. ATL is textual. UMLX is 
graphical. Once the abstract syntax is standardised, ATL, GReAT and UMLX should just be examples of 
concrete QVT syntaxes from which users can choose, and between which transformations can translate. 
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8 Summary 
We have outlined UMLX, a graphical transformation language that integrates with UML as a mapping 
between schema. UMLX is a declarative language, and consequently offers scope for powerful 
optimizations. 

We argue that the declarative nature of UMLX enables it to be regarded as a high level language for XSLT 
from which it derives many important concepts such as referential transparency. 
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The diagrams in this paper demonstrate the successful configuration of GME as an editor for UMLX, and 
we have discussed the ongoing parallel development of diagrammatic and manually coded implementations 
of a compiler for UMLX written in UMLX. 
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