
E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 1

UMLX : A graphical transformation language for MDA
Edward D. Willink, EdWillink@iee.org

GMT Consortium
www.eclipse.org/gmt

4 September 2003
Abstract
With the increased use of modelling techniques has come the desire to use models as a programming
language as part of a Model Driven Architecture. This desire can now be satisfied by exploiting XMI for
model interchange and XSLT for model transformation. However the current transformation techniques are
far removed from modelling techniques. We therefore describe a graphical transformation language, which
involves only minor extensions to UML but constitutes a high level language for transformations.

1 Introduction
The Object Management Group (OMG) has issued a Request For Proposal [16] for a Query / Views /
Transformations (QVT) language to exploit the Meta-Object Facility (MOF) [15], which as from version
2.0 should share common core concepts with the Unified Modeling Language (UML) 2.0 [17]. The initial
submissions of 8 and first revised submissions of 5 consortia1 have been made, and somewhat surprisingly,
only one of them [18] uses a partial graphical representation and another [11] just a graphical context for
their language.

This paper describes independent work to provide an Open Source tool to support the OMG’s Model
Driven Architecture (MDA) initiative [13]. A primarily graphical transformation language is described that
extends UML through the use of a transformation diagram to define how an input model is to be
transformed into an output model. This work has much in common with two of the QVT proposals [12]
[18], and it is hoped that it is not too late for some of the ideas in UMLX to influence revised QVT
proposals.

Proprietary file formats once created significant impediments to sharing or re-use of information between
software tools. Fortunately, the advent of XML [20] is steadily eroding these barriers, and the ease with
which XML can be read and written using the Java DOM [19] support makes XML a natural choice for
new applications. When information is stored in an XML format, albeit with a proprietary schema, it is
possible to deduce the schema and gain access to the information content. The advent of XSLT [21] has
made transformation between XML formats relatively easy, so that as standard XML formats are agreed,
proprietary or legacy formats can be accommodated by translators.

Both XML and XSLT, which is an XML dialect, are effective compromises between man and machine
intelligibility, but as compromises they leave plenty of scope for more user-friendly representations. There
are therefore a variety of data modelling tools, many based on UML, that provide greater rigour in the use
of an underlying XML representation, increasingly exploiting the stronger disciplines of XMI [14]. There
are, however, few tools that hide the impressively compact and sometimes dangerously terse underlying
XPath representation. We will now describe one such tool and its associated language: UMLX.

Before we review the MDA and its supporting transformations in Section 3, we introduce the UMLX
concepts in Section 2, where a simple example demonstrates that transformations are applicable for
specification of conventional program execution as well as for program compilation. In Section 4, we go a
stage further and discuss the use of transformations to specify the UMLX compiler compilation. We then
summarize the current compiler status and future plans in Section 5. Finally we discuss related work.

2 UMLX
UMLX uses standard UML class diagrams to define information schema and their instances, and extends
the class diagram to define inter-schema transformations. We will therefore use as much standard practice
as possible in our introduction of the additional UMLX transformation concepts. We describe an address
book with email and telephone contact details as a running example, as we move from the hopefully
familiar territory of information modelling, on through transformations at the program-level, via the
compiler-level to the compiler-compiler-level.

1 The author is not directly associated with the OpenQVT consortium of which his employer, Thales
Research and Technology (UK) Limited as part of Thales, is a member.

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 2

In this section we just introduce the UMLX extensions to UML. The very important area of compiler
transformations is deferred until Section 3 and the reader is referred to [9] for a presentation of the standard
UML to RDBMS example using UMLX.

2.1 Schema Definitions
An information model is defined using a
schema, which uses the sub-set of UML class
diagram syntax appropriate to information
modelling. This syntax is summarized in Figure
2.1.

In Figure 2.2 we model an AddressBook with
many Contacts for each of many Entrys
using composition relationships. The two types
of Contact are modelled using inheritance of
Phone and Email from the abstract Contact.
The national, regional and local parts of a phone
number are modelled using distinct objects. The
national dialling codes are modelled using one
object per country within the AddressBook, so
that the phone number references the appropriate
country object using a navigable association. All
other information, such as the name of the
AddressBook owner, is modelled using
attributes.

2.2 Schema Usage
A schema defines all possible information sets that comply with the information model. A specific
instantiation or usage of a schema may be defined graphically using instances. Figure 2.3 shows an address
book instance with just one entry with two contacts.

2.3 Schema to Schema Transformation
Instances of schemas may be maintained by a wide variety of often proprietary tools, which provide
internal capabilities to transform to external formats, but generally prevent direct access to the internal

Figure 2.3 Example Instance

Figure 2.1 Schema Syntax

Figure 2.2 Example Schema

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 3

representation. However, when a standard XML format is used we may look to start applying custom
transformations.

The UMLX extensions that
support transformations are
summarized in Figure 2.4.

It is convenient, though not
necessary, to draw
transformations with inputs
on the left and outputs on the
right so that we can refer to
the left hand side (LHS) as
the pre-transformation or
input context and the right
hand side (RHS) as the post-
transformation or output
context.

A hierarchical transform has
an Invocation context
established by binding LHS
contexts to input ports and
RHS contexts to output ports.
The Input and Output
syntaxes define how these ports are in turn associated with the internal LHS and RHS contexts. The
Preservation, Evolution and Removal syntaxes define the contribution of an LHS construct to the RHS. The
LHS is always unchanged. We hope that the usage of these syntaxes will adequately correspond to intuition
as we progress our running example. More details are given in [8].

A too frequent
problem with
address books is the
requirement to
update phone
numbers to adjust to
the changed policies
of the phone
companies. A
transformation to
change all UK
numbers with the
regional code 111 to
10111 may be
defined in UMLX as
shown in Figure 2.5.

At the extreme top
left and right hand side of the diagram are two port icons that define the external interface of the
transformation. The in port accepts an AddressBook, or an instance of some class derived from
AddressBook, with the unidirectional arrow providing a visual indication that the source may be read but
not updated. The out port similarly handles an AddressBook, and the bidirectional arrow provides a
visual reminder that the write-only result is shared and so may be updated by concurrent non-conflicting
matches of this and other transformations.

The diagram comprises two schema instantiations, the one on the left connected to the input defines a
structure to be discovered in the input model, each of whose instances trigger the transformation to produce
the schema instantiation on the right hand side. A structure is an arrangement of objects with connectivity,
multiplicity, type, value and other constraints. (We refer to structures rather than patterns to avoid
confusion with the more abstract concept used in the pattern community. The concepts are closely related;
structures form part of the specification of a re-usable solution to a problem in the transformation context,
whereas a pattern concerns a recurring problem in a more general context.)

A distinct structure match is detected for each matching set of objects in the input model, which in the
example means a match for each contact whose national name is UK, and whose regional number is 111.

Figure 2.4 Transformation Syntax

Figure 2.5 Explicit Phone Number Transformation

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 4

The explicit preservation between the two AddressBooks provides an implicit preservation of its
composed contents. Implicit preservation or removal recurses until an explicit transformation operator
dominates, as for the matched Phone contact. The old regional code is excluded from the output by the
removal, and replaced by the evolution of a new regional code with the changed value.

The interpretation of cardinalities in a transformation deserves clarification. In a schema, cardinalities
define the bounds against which the application elements of a particular schema instance may be validated.
In a transformation, the cardinalities represent the multiplicities that must be satisfied by each match; there
is a distinct match for each possible set of correspondences between transform and application elements
for which all cardinalities are fully and maximally satisfied.

We may therefore interpret the left hand side match as

given a book of base-type AddressBook
 for-each person of base-type Entry in book.person
 for-each contact of base-type Phone in person.contact
 for-each region of base-type RegionalCode in contact.regional
 for-each country of base-type InternationalCode in book.country
 if country is referenced by contact.national
 if country.name is ’UK’
 if region.number is ’111’
 <match found at book,person,contact,region,country>
and the transformation action in the context of each match as

within the context of the preserved matched contact
 remove the old regional child object
 create a new regional child object of type RegionalCode
 with number set to ‘10111’
When a model is known to comply with its schema, there are many optimizations that can be applied:

� Only the Phone type needs validation, since it is the only derived type in the transformation.
� The region loop is redundant since its multiplicity is exactly one.

The sequencing of the loops is also subject to optimization. For instance, if an implementation has a fast
look-up key for country, that loop and its conditional could be performed first. Conversely, we may analyze
this and other transforms and choose to synthesize an implementation in which there is a fast look-up for
country.

The relationship multiplicities determine the
complexity of the matching, and in this
example all multiplicities have been unity.
Other multiplicities, such as zero, which
requires an absence of matches, or more than
one which may match combinatorially, are
discussed in [8]. When multiplicities are
applied to hierarchical transformations,
predicates and sub-matches are supported.

Consistent resolution of overlapping matches
between concurrent transforms is made
possible by the concept of an evolution
identity. Each evolved RHS transformation
entity has a formal signature determined by the
set of evolutions from which it evolves. Each
of these evolutions may in turn be associated with a set of LHS entities. The correspondence of actual LHS
instances in the discovered match to the LHS instances in the formal signature defines the identity of the
actual RHS entity. Again more details may be found in [8].

The example application can be made a little more useful by defining the additional schema for changes
shown in Figure 2.6. We may now seek to apply a batch of AddressRegionChanges and/or
EmailChanges. An individual AddressRegionChange may be realized by the slightly changed
transformation, shown in Figure 2.7 that now takes two inputs, and matches where common
<<primitive>> String values are found. A match therefore occurs for the combination of each Phone
contact that matches an AddressRegionChange.

Figure 2.6 Contact Changes Schema

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 5

This transformation may be invoked hierarchically as shown in Figure 2.8. The two incoming models, an
address book and a change list, are merged to produce an updated address book.

The outer transform finds a distinct match for each Change, and attempts to apply both the
ApplyAddressRegionChange and the ApplyEmailChange sub-transformations. However the use of

a derived input type, AddressRegionChange, in ApplyAddressRegionChange ensures that only the
transformation applicable to the actual Change progresses.

Having modelled an address book and a mechanism for automating changes, we can adapt to changes more
easily. When a standard AddressChangeML dialect emerges, the update code can be remodelled on the new
standard, or the change mechanism revised to define a transformation from the new change standard. XML
files can then supersede or at least augment informal change of address emails or cards for address change
notification. A transform may similarly be created to rescue our address book following an upgrade to a
tool that uses a new standard AddressBookML.

3 The Model Driven Architecture
In support of the MDA, we want to transform portable Platform Independent Models (PIM) into efficient
Platform Specific Models (PSM).

3.1 PIMs, PSMs and PDMs
The models presented so far have been PIMs; they only specify required functionality. Their persistent
representation may use a database, an XML file, or a proprietary format. Their functional implementation
may use database queries, XML transformations or proprietary code. They may therefore be simulated,

Figure 2.7 ApplyAddressRegionChange Transformation

Figure 2.8 Compound Transformation

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 6

using whatever representation and implementation a simulator chooses. However, to produce a practical
application, they must be converted to PSMs that incorporate extra platform information. It has been
common practice to either produce PSMs in the first place and thereby lose portability, or to redraw the
PIMs as PSMs and thereby create a disconnect between design and implementation models.

The additional context is provided by a Platform Description Model (PDM), which should also be re-usable
since we may require many different PIMs to operate in the same context. The PDM may comprise
descriptions of

� component/Operating System/instruction set capabilities
� language/assembler type systems
� driver/hardware interfaces
� communication protocols
� network connectivity
� library resources
� tools

Neither PIM nor PDM should be modified to field a
specific PIM to a specific PDM, so we need a further
model in which to capture the mapping requirements
unique to a particular PIM and PDM combination. The
transformation language that can implement the merge
of PIM and PDM to produce a PSM is a sufficient
topic for this article, so we will just suggest that after
some elaboration, a hierarchy of UML Deployment
Diagrams may fulfil this role as shown in Figure 3.1.

Two re-usable models must be merged and
transformed under control of the third. There are many
different problems that must be resolved:

� alignment of specification attribute types to the implementation type system
� reification of compositions and associations
� selection, parameterization and interfacing of library elements
� partitioning of specification regions to execution units

 (classes or components or processes or processors or …)
� selection of communication policies between execution units
� selection of scheduling policies for execution units
� activation of communication policies between execution units
� activation of scheduling policies for execution units

Code generation may then be performed in favoured language(s).

The above list is incomplete for conventional applications, and we should add any aspects that may be of
concern to particular applications

� establishment of an error handling policy
� introduction of fault tolerant redundancy
� distributing persistence
� validation of throughput capabilities
� dynamic or static load balancing
� array distribution and cache coherence

There are clearly far too many different problems to solve all at once, so a practical tool must modularize
them so that they are resolved one at a time, with as little interaction as possible. What is shown in Figure
3.1 as a single transformation is in practice a compound transformation, comprising many sequential,
concurrent and hierarchical sub-transformations with many intermediate pivot models.

Some of these problems may be resolved by patterns, with a transformation library supplying established
solutions that can be applied in response to the problem primarily defined by the PIM, the context primarily
defined by the PDM and extra forces perhaps in the Deployment Model. The compound transformation
must therefore adapt, in some cases through automatic recognition of PIM concepts that must be
eliminated. However, it is unlikely that a satisfactorily efficient conversion can be fully automated, so

Platform
Independent

Model

Deployment
Model

Platform
Description

Model

Platform
Specific
Model

Transformation

Figure 3.1 MDA Models

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 7

iteration to allow elaboration of the Deployment Model with sufficient guidance will be essential. This will
require dynamic activation of analysis and diagnostic transforms to assist the system designer.

3.2 Compiler Transformation
A number of categories of compiler transformations have been listed above. Some rather more obvious
examples are provided by reification of specific UML concepts.

� Translation of Abstract classes to Interfaces in Java or pure virtuals in C++
� Translation of State Machine States and Events into Classes
� Translation of UML relationships into Operations and Attributes
� Translation of a UML model to an RDBMS model [9]

We will give one simple example. UML diagrams comprise boxes for concepts with lines for relationships
between them. A few boxes correspond directly to language constructs such as classes, but for the other
boxes and lines, it is necessary to find an appropriate implementation approach. An example of one form of
relationship without a direct language counterpart is a composition.

Whereas in the earlier examples we were considering the program level where execution involves instances
of application concepts such as AddressBook and Contact, we now consider the compiler level where
compilation involves instances of language concepts such as Class and Composition.

The composition shown in Figure 3.2 may be transformed into a
Sequence(Contact) member variable in AddressBook, where
Sequence() is the OCL collection type. Further transformations,
close to code generation, are required to convert it to the appropriate
Java, C++ or VHDL equivalent.

We do not normally want to specify a separate transformation for each
composition individually; rather the same transformation policy may
form part of a package of Object Oriented transforms and can be
applied to all compositions, so we specify a transformation on the
UML meta-model:2

Here the left-hand side defines
the structure involving the
Association that represents
the composition line, the two
Propertys that represent each
line end and the two Classes
within a Package. In UML, the
distinction between associations
and compositions is made by the
graphical attributes on the line
ends, so we apply constraints to
indicate that one end should have
a composite diamond and the
other none as its decoration.

Wherever this structure is found,
the transformation specifies that
the Association and kid
Property be removed, and that
the type of the parent property
be changed to Sequence of the
child type.

This transform is far from
complete, since any practical
implementation of a composition
must also provide support code to ensure that the child and its contents are appropriately constructed and
maintained.

2 Specific classes or compositions may be transformed by additional constraints on the class names.

Figure 3.2 UML
Composition

Figure 3.3 Composition Transformation

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 8

The transform is therefore just a part of the support necessary for the UML Composition concept, which is
just one of many concepts in need of transformation. It also forms just one of a number of passes; further
transformations will be necessary to progress the OCL concepts into a particular programming language.

4 UMLX Compiler
Use of UMLX enables the problem of model
transformation that lies at the heart of MDA to be
expressed using modelling technology. The meta-
models for each of the input and output models are
used by the meta-model of the transformation model.
This transformation meta-model is compiled to
produce the transformation model (or program) that
is executed by some transformation engine to realise
the required transformation.

XML technology is appropriate for transfer of
models between tools and transformation engines.
The transformation engine may then be realised
using any technology for which XML import and
export are supported, and a transform compiler is
available.

An editor for UMLX has been implemented using
the GME [7] meta-modelling tool, and a capability
has been added to support XMI export.

A compiler for UMLX is being defined using UMLX
meta-models, and manually implemented using
XSLT, or rather NiceXSL3. Once this
implementation is operational, it should be possible
to use it as a bootstrap to regenerate itself from the
UMLX meta-models.

Implementation of the compiler using XSLT is
particularly straightforward since XML models can be imported directly; a remarkably small
transformation engine just interprets the activities encoded in the transformation model.

Once code generators for C++ or Java have been modelled, the transformation compiler can generate more
efficient or more portable code to implement transformations. And since the UMLX compiler is defined in
UMLX, the transformation compilation can be regenerated with similar benefits.

Thereafter, development of optimizations described in Section 5 may proceed in UMLX, without further
recourse to XSLT. Once these optimizations are in place, it will be possible to build an efficient custom
compiler from a set of user-selected transformations. This custom compiler need only be regenerated when
the meta-models are changed.

More significantly, it will be possible for a custom compiler to be developed, based on the re-usable
transformations, and adapted for unique application requirements. This requires a transformation library for
the various stages of transformation from UML specification to implementation.

Looking further ahead, if compilers and synthesis tools are restructured as transformation engines, the
increasingly powerful but specialized algorithms that they contain may be exposed for similar intervention.

It is the aim of the Generative Model Transformer (GMT) project at Eclipse to provide an Open Source
transformation tool and a library of transformations so that this all becomes possible.

The UMLX compiler, in its current bootstrap state, comprises over 100 diagrams, so it is clearly
inappropriate to present them all here. We will therefore just present two diagrams to demonstrate the need
to support multiple inputs, multiple schema, workflow and hierarchical transformations, and to introduce
the UMLX usage of multi-objects and inheritance.

3 NiceXSL is a more conventional textual representation for XSLT. Translators to and from XSLT are
available from http://www.gigascale.org/caltrop/NiceXSL.

Platform
Independent
MetaModel

Deployment
MetaModel

Platform
Description
MetaModel

Platform
Specific

MetaModel

Transformation
Compilation

Transformation

Transformation
MetaModel

Transformation
Model

Figure 4.1 MDA Meta-Models

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 9

4.1 Transformation Compilation Example
The top level diagram of the UMLX compiler, shown in Figure 4.2, demonstrates the need for multiple
inputs with intermediate pivot models. The two inputs comprise the schema defining the data meta-models,
and the transformations between these meta-models. Two intermediate pivot models are produced by
annotating the input models with derived information to simplify the subsequent compilation activity.

One important part of the schema annotation pass is to attach a transitive list of all base classes to each
class, so that subsequent tests for inheritance and name visibility can be made without repeated traversal
and resolution of name occlusion within the inheritance hierarchy.

The complexities of multiple inheritance require the use of two passes, first to identify the base classes and
then generating the annotations describing them. Figure 4.3 shows the main recursion to gather another
layer of base classes with respect to a new work-list of as-yet-unanalysed base classes, and an old work-
list of already-analysed base classes, all within the context of a particular schema. (The recursion is started
with an empty old list, and a new list containing just the class to be analysed.)

UML multi-objects are used for the work-lists, and so the left hand side may be read as

for each arc of base type Inheritance in schema
 for which base at arc.source has not yet been analysed
 and for which derived at arc.target has yet to be analysed
 <generate a match response for base>
The 0 multiplicity on elements of the incoming old work-list requires the base match to be absent from
the already-analysed work-list, and so avoids revisiting multiply inherited bases.

The 1 multiplicity on elements of the incoming new work-list requires the target match to be present in
the as-yet-unanalysed work-list.

This is a multi-pass transformation, and so the centre of the diagram, which we may refer to as the middle
side acts as the right hand side of the first pass, and the left hand side of the second. The middle side directs
that a new new work-list be evolved (and shared across all concurrent matches) so that each match
contributes its newly found inheritance source to the work-list. The preservation of incoming old and
new work-lists as the middle old work-list, with redundantly explicit 1 to 1 multiplicities, directs that for

Figure 4.2 Transformation Compilation

Figure 4.3 GatherYetMoreBaseClasses

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 10

each incoming work-list each element is preserved in the resulting work-list, and that the resulting work-list
contains exactly one copy of each incoming element. There is therefore a merge, with removal of
duplicates.

Once the left hand side to middle side sub-transformation is complete, the middle side to right hand side
can progress by invoking a recursive transform. The recursion involves two distinct cases and so it is
convenient to define and invoke an abstract transformation from which the distinct cases derive.

Invocation of the abstract transformation
invokes all the derived transformations
shown in Figure 4.4. We have just seen
that GatherYetMoreBaseClasses
matches all additional base classes.
However, if there are no base classes there
will be no LHS matches and consequently
no middle side from which to recurse. It is
therefore necessary for GatherNoMoreBaseClasses to match at the end of the recursion. This simpler
case differs from Figure 4.3 through specification of zero for the Schema to Inheritance multiplicity,
and use of the merged work-lists as the bases result without recursion.

The example just presented is a compromise between identifying a simple enough part of the compiler to be
presented in isolation, while showing sufficient complexity to reflect real problems. There are parts of the
compiler that are significantly more complicated and the author regrets that he was unable to program these
areas correctly first time in XSLT, and as a result has engaged in a distressing amount of empirical
development. As the UMLX compiler has progressed, it has been possible to exploit visual symmetries
within UMLX diagrams to make complex relations easier to understand, and with the ability to machine
check the validity of each drawn relationship against a meta-model, UMLX now enables subtle XPath
expressions to be constructed with far greater predictability and will soon support fully automated
generation. The full set of UMLX diagrams for the UMLX compiler and executor may be found in [10].

5 Current Status and Future Work
An editor for UMLX has been configured and most of a bootstrap compiler has been designed using
UMLX and implemented in NiceXSL. This already shows useful ability to validate UMLX designs and
generates XSLT that successfully applies a concurrent and sequential transform hierarchy to models
provided that any OCL expressions are kept simple.

The main priority is to raise the functionality level to the point where the bootstrap compiles its own design
to produce a viable compiler. Progress can then be made on the compiler and on a library of standard
transformations to support at least MDA. Compiler work will involve

� single transform optimizations that exploit properties of schemas to improve the speed of structure
matches, and generate code more efficiently

� concurrent transform optimizations that sequence matches to maximize the sharing of partial match
contexts exploiting fast indexing approaches

� sequential transform optimizations to eliminate overheads by combining transforms and sharing
intermediates

� code generation to Java, C++ to improve the speed of structure matches, and generate code more
efficiently.

This should produce an increasingly viable compiler for XMI to XMI or text transformations that may then
be integrated as an additional code generator behind configurable UML tools.

In parallel with this, work on the basic MDA tool box is needed to support
� type resolution
� processor allocation
� component configuration
� performance assessment
� common patterns
� etc. etc.
� code generation to various implementation languages (C++, Java, SQL, XML, VHDL, …).

Figure 4.4 Transformation Inheritance

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 11

It is hoped that UMLX can provide a graphical presentation and a QVT framework in which research teams
can make their unique contributions by complementing rather than competing with the achievements of
others.

6 Related Work
Presenting transformations in a graphical style highlights the very close relationship with work on Graph
Transformations [4][5]. The UMLX concepts of Preserve, Evolve, Remove correspond directly to Keep,
Add and Delete, and so Single or Double Push Out representations of UMLX diagrams are easily derived,
where they exist. The Graph Theory work provides a solid foundation upon which proofs of transformation
optimisations can be based, and an identification of the conditions that must be satisfied by reversible
transformations. It is clear that potentially useful transformations cannot be reversed if they involve many
to one mappings or if they destroy cross-linking edges as a graph is transformed into a tree. Characterising
UMLX as either SPO or DPO is a matter for further research, since the discipline of evolution identities
may avoid some limitations of SPO, but the second class treatment of arcs prohibits categorisation as DPO.

Gerber et al [6] have experimented with a variety of different transformation languages, and while
favouring XSLT, they clearly have their reservations as their code became unreadable. Their experiences
have influenced their QVT proposal [12], which we feel is not dissimilar to a textual representation of
UMLX. Their concept of tracking before/after instances to correlate multiple transformations is subsumed
by an evolution identity in UMLX; the latter is a natural consequence of the graphical syntax, whereas the
former is a little untidy.

The QVT partners’ submission [18] draws an interesting distinction between bi-directional mappings and
uni-directional transformations. Their LHS and RHS graphics is similar to UMLX, but without the
multiplicities, and they rely on text to define the relationship between LHS and RHS.

The Compuware and Sun joint submission [11] uses graphics to show the context of their transformation,
which is then defined textually in a very declarative and reversible style. It is not clear how irreversible
transformations can be represented.

The ISIS group at Vanderbilt has pursued the concepts of meta-modelling through the GME tool [7]. A
preliminary paper on a Graphical Rewrite Engine [1] inspired the development of UMLX. The evolution to
GReAT is described in [2] together with a good discussion on the significance of cardinalities in a UML
context. GReAT is similar to UMLX, but lacks a clear distinction between LHS and RHS. Perhaps the
main difference is one of emphasis. GReAT is concerned with simple compilation to an efficient
transformation, with transformation compilation and implementation directly implemented in C++. UMLX
is more concerned with specifying the required transformation, using UMLX to specify both the
compilation and the execution of the transformation. UMLX will therefore be very slow until the UMLX
specifications for C++ code generation and optimization are in place. Since UMLX is declarative, with a
clear LHS/RHS distinction, there should be greater scope for inter-transform composition and optimization
of UMLX.

The underlying philosophy of UMLX is identical to ATL [3]. Both seek to provide a concrete syntax for a
consistently meta-modelled abstract syntax that should evolve towards QVT. ATL is textual. UMLX is
graphical. Once the abstract syntax is standardised, ATL, GReAT and UMLX should just be examples of
concrete QVT syntaxes from which users can choose, and between which transformations can translate.

7 Acknowledgement
The author is grateful to anonymous referees, and to Jim Baddoo, Jörn Bettin, Jean Bézevin, Tim
Masterton, Richard Metcalfe, Laurent Rioux and members of the Thales MIRROR project for helpful
comments on earlier drafts of this article.

8 Summary
We have outlined UMLX, a graphical transformation language that integrates with UML as a mapping
between schema. UMLX is a declarative language, and consequently offers scope for powerful
optimizations.

We argue that the declarative nature of UMLX enables it to be regarded as a high level language for XSLT
from which it derives many important concepts such as referential transparency.

E.D.Willink UMLX : A graphical transformation language for MDA

4 September 2003 Page 12

The diagrams in this paper demonstrate the successful configuration of GME as an editor for UMLX, and
we have discussed the ongoing parallel development of diagrammatic and manually coded implementations
of a compiler for UMLX written in UMLX.

9 References
[1] Aditya Agrawal, Tihamer Levendovszky, Jon Sprinkler, Feng Shi, Gabor Karsai, “Generative

Programming via Graph Transformations in the Model-Driven Architecture”, OOPSLA 2002
Workshop on Generative Techniques in the context of Model Driven Architecture, November 2002
http://www.softmetaware.com/oopsla2002/karsaig.pdf

[2] Aditya Agrawal, Gabor Karsai, Feng Shi, “A UML-based Graph Transformation Approach for
Implementing Domain-Specific Model Transformations”,
http://www.isis.vanderbilt.edu/publications/archive/Agrawal_A_0_0_2003_A_UML_base.pdf.

[3] Jean Bézevin, Erwan Breton, Grégoire Dupé, Patricx Valduriez, “The ATL Transformation-based
Model Management Framework”, submitted for publication.

[4] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel and M. Löwe, "Algebraic Approaches to
Graph Transformation I: Basic Concepts and Double Pushout Approach", In G. Rozenberg, ed., The
Handbook of Graph Grammars, Volume 1, Foundations, World Scientific, 1996.

[5] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wganer and A. Corradini, "Algebraic
Approaches to Graph Transformation II: Single Pushout Approach and comparison with Double
Pushout Approach", In G. Rozenberg, ed., The Handbook of Graph Grammars, Volume 1,
Foundations, World Scientific, 1996.

[6] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel and Andrew Wood, “Transformation: The
Missing Link of MDA”,
http://www.dstc.edu.au/Research/Projects/Pegamento/publications/icgt2002.pdf

[7] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles Thomason, Greg
Nordstrom, Jonathan Sprinkle and Peter Volgyesi, The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/Projects/gme/GME2000Overview.pdf

[8] Edward Willink, “The UMLX Language Definition”,
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-home/doc/umlx/umlx.pdf.

[9] Edward Willink, “A concrete UML-based graphical transformation syntax - The UML to RDBMS
example in UMLX”, http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-
home/doc/umlx/M4M03.pdf

[10] Edward Willink, “UMLX Compiler Models”,
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-home/doc/umlx/UmlxCompiler.pdf.

[11] Compuware Corporation and Sun Microsystems, "XMOF Queries, Views and Transformations om
Models using MOF, OCL and Patterns", OMG Document ad/2003-08-07,
http://www.omg.org/docs/ad/03-08-03.pdf.

[12] DSTC, IBM, “MOF Query/Views/Transformations, Initial Submission”, OMG Document ad/2003-
08-03, http://www.dstc.edu.au/pegamento/publications/ad-03-08-03.pdf.

[13] OMG, “Model Driven Architecture (MDA)”, OMG Document ormsc/01-07-01,
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01.

[14] OMG, “OMG-XML Metadata Interchange (XMI) Specification, v1.2”, OMG Document -- formal/02-
01-01 , http://www.omg.org/cgi-bin/doc?formal/2002-01-01

[15] OMG, “Meta Object Facility (MOF), 1.4”, OMG Document -- formal/02-04-03,
http://www.omg.org/cgi-bin/doc?formal/2002-04-03

[16] OMG, “Request For Proposal: MOF 2.0/QVT”, OMG Document, ad/2002-04-10.
[17] OMG, “Unified Modeling Language, v1.5”, OMG Document -- formal/03-03-01

http://www.omg.org/cgi-bin/doc?formal/03-03-01
[18] QVT Partners, “Revised submission for MOF 2.0 Query/Views/Transformations RFP”, OMG

Document ad/2003-08-18, http://www.qvtp.org/downloads/1.1/qvtpartners1.1.pdf.
[19] W3C, “Document Object Model (DOM) Technical Reports”, http://www.w3.org/DOM/DOMTR.
[20] W3C, “Extensible Markup Language (XML) 1.0 (Second Edition)” W3C Recommendation 6 October

2000, http://www.w3.org/TR/REC-xml.
[21] W3C, “XSL Transformations (XSLT) Version 2.0”, W3C Working Draft 2 May 2003,

http://www.w3.org/TR/2003/WD-xslt20-20030502

