
Better Generative Programming with
Generic Aspects

Raul Silaghi

Software Engineering Laboratory
Swiss Federal Institute of Technology in Lausanne

CH-1015 Lausanne EPFL, Switzerland

E-mail: Raul.Silaghi@epfl.ch

Abstract. After a brief introduction to generative, generic, and aspect-oriented
programming, we point out four key elements that appear in the definition of gen-
erative programming and that are addressed in this position paper from the per-
spective of distributed systems development. Then, based on a concrete RMI dis-
tribution example, we start motivating how the expressiveness power of generics
and the crosscutting modularization power of aspects could be combined in order
to achieve highly reusable generic aspects. We conclude by presenting how ge-
neric concern-oriented model transformations could help in providing the neces-
sary information to aspect generators for automatically instantiating our generic
aspects before weaving them into concrete applications.

Keywords. Generative Programming, Generics, Aspect-Oriented Programming,
AOP, Model Transformations.

1 Introduction

Remarkably, much of software engineering today is still carried out by manual meth-
ods. Significant productivity enhancements require automation, which in turn require
tools that deeply understand programs. Generative programming is a class of tool tech-
nology that captures knowledge about how to generate code, enabling automation.

Generic programming is about generalizing software components so that they can
be easily reused in a wide variety of situations. In the context of generative program-
ming, the principles of generic programming are applied to the solution space, where
we try to come up with a very generic set of implementation components that minimize
redundancy, maximize the number of their possible concrete instantiations, and support
a vast number of combinations to yield very efficient, concrete applications.

At a more abstract level, generic programming focuses on representing families of
domain concepts, whereas generative programming also includes the process of creat-
ing concrete instances of concepts.

Separation of concerns is one of the software engineering design principles that is
getting more attention from practitioners and researchers in order to promote design and
code reuse. However, concern is a broad term, encompassing anything that is of impor-
tance to the application, be it infrastructure, code, requirements, design artifacts, etc.

Some concerns, such as data and functions, can be very well encapsulated using object-
oriented mechanisms. Others, such as logging, profiling, distribution, transactions, or
security, cannot; their implementation is usually expressed by small code fragments
scattered throughout the system. Aspect-Oriented Programming (AOP) [KLM+97] pro-
vides the user with the ability to modularize such crosscutting concerns into aspects in
order to solve the code-tangling problem, ease the development and maintenance of ap-
plications, and maximize code reusability.

When building distributed systems, different middleware-specific crosscutting con-
cerns need to be integrated along with the core functionalities of the application. While
AOP provides a good mechanism to deal with such crosscutting concerns, generative
and generic programming can help to deal with the corresponding implementation as-
pects in an automatic way, completely transparent for the application programmer.

This position paper was inspired by the following definition of generative program-
ming:

Generative Programming is a software engineering paradigm based on
modeling software system families such that, given a particular re-
quirements specification, a highly customized and optimized interme-
diate or end-product can be automatically manufactured on demand
from elementary, reusable implementation components by means of
configurations knowledge [CE00].

Several key elements on which generative programming is based upon are revealed by
this definition. However, in the context of this position paper, we will only focus on four
of these elements from the perspective of distributed systems development: (1) families
of software systems; (2) reusable implementation components; (3) customization; and
(4) automation.

The outline of the rest of this position paper is as follows: Section 2 starts with a
motivating example and describes the important parts of a possible aspect-oriented im-
plementation solution; Section 3 presents generic aspects as a better way to improve re-
usability and in the same time deal with middleware-specific crosscutting concerns for
families of distributed systems; Section 4 makes an one-to-one association between as-
pects and model transformations in order to show how customization automation could
be achieved, and Section 5 draws some conclusions.

2 Motivating Example

In this section, we present a small example that every developer has to deal with when
building distributed systems. Suppose we have an object that provides certain function-
alities, like a math object that can compute trigonometric functions, and now we would
like to make this object’s functionalities available in a distributed setting. In order to
achieve this, the first thing a developer needs to do is to select one of the currently avail-
able middleware technologies. Further on, s/he has to embed the math object into ei-
ther an RMI [rmi99] server object, a CORBA [corba02] server object or a CORBA
component [ccm02], an EJB [ejb01], a COM/COM+/DCOM [com03] or .NET [net03]
server object, or into a Web Service [ws03], according to the previously chosen tech-
2 / 14

nology. To conclude, s/he has to modify all client applications to make them aware of
the, by now, remotely available functionalities of the math object.

For space reasons only, we have considered the simplest solution, i.e., implement
the math object as an RMI server object. In Figure 1 and Figure 2 we show the entire

code present at the server-, respectively client-side, of the application. On both sides we
used rounded rectangles to highlight the changes that need to be done in order to “trans-
form” a centralized application into an RMI-based distributed one. The strikethrough
line in Figure 2 is from the original centralized code and needs to be replaced with the
content of the rounded rectangle that comes immediately below it in the same figure.
Please notice that, following the design by contract principles [Mey92, Mey02], even
in the centralized application the client is supposed to have a reference to the interface
MathI and not to the Math class. If the developer does not comply to such program-
ming rules, then the “transformation” might produce unpredictable results.

As one can easily notice from the two figures, the code that would handle the RMI-
based distribution concern is not at all well localized. Instead, it is scattered throughout
the whole application, crosscutting the main functional units of the system but without
bringing any new user-defined functionality. As a consequence, an AOP approach
seems to be the ideal solution to encapsulate such a crosscutting concern into a separate
distribution unit.

AspectJ [KHH+01] is a general-purpose aspect-oriented extension to Java
[GJS+00]. It defines one new concept, a join point, and adds a few new constructs, such
as pointcut, advice, introduction, and aspect. Join points are well-defined points in the
program flow; pointcuts are a means of referring to collections of join points and con-

Fig. 1. Server-Side Code for an RMI-based Distribution Example

// MathI.java
public interface MathI extends java.rmi.Remote {
 float sin(int degrees) throws java.rmi.RemoteException;
 float cos(int degrees) throws java.rmi.RemoteException;
}

// Math.java
public class Math
 extends java.rmi.server.UnicastRemoteObject
 implements MathI {

 public Math() throws java.rmi.RemoteException {
 super();
 }

 public float sin(int degrees) throws java.rmi.RemoteException {
 return (float) 0.5;
 }

 public float cos(int degrees) throws java.rmi.RemoteException {
 return (float) -0.5;
 }

 public static void main(String[] args) {
 try {
 Math mathObj = new Math();
 java.rmi.Naming.bind("rmi://127.0.0.1/math", mathObj);
 } catch (Exception ex) {}
 }
}

3 / 14

text values at those joint points; advice defines code that is executed when a pointcut is
reached during execution; introduction can be used to affect the static structure of Java
programs, namely the members of its classes and the relationships between classes; and
aspects are AspectJ’s modular units of crosscutting implementation defined in terms of
pointcuts, advices, introductions, and ordinary Java member declarations.

Having in mind the features offered by AspectJ, we can group the changes high-
lighted in Figure 1 and Figure 2 into three different categories: changes that affect the
static structure of the Java application (); changes that affect the dynamic structure
of the application by changing the way the application executes (); and changes re-
lated to exception throwing declarations, which can be seen as modifying the static
structure but were grouped separately due to a reason that will be presented later in this
section ().

Some of these changes can be easily implemented using AspectJ, others require
workarounds, while others require extensions to the current version of AspectJ. For in-
stance, using the AspectJ’s static crosscutting mechanism, one can introduce new meth-
ods and fields to an existing class, convert checked exceptions into unchecked excep-
tions, and change the class hierarchy, by making an existing class extend another one
or implement a new interface. Thus, based on simple introductions, we can implement
all the changes that fall into the first category ():

Fig. 2. Client-Side Code for an RMI-based Distribution Example

// Student.java
public class Student {
 private MathI mathI = null;

 public Student() {
 }

 private MathI getMathInterface() {
 if (mathI == null) {
 mathI = new Math();
 try {
 mathI = (MathI) java.rmi.Naming.lookup("rmi://127.0.0.1/math");
 } catch (Exception ex) {}
 }
 return mathI;
 }

 public void displayValues() {
 float sin=0, cos=0;
 MathI localMathI = getMathInterface();
 try {
 sin = localMathI.sin(30);
 cos = localMathI.cos(120);
 } catch (java.rmi.RemoteException ex) {}
 System.out.println("sin(30) = " + sin + "\n" +
 "cos(120) = " + cos + "\n");
 }

 public static void main(String[] args) {
 Student s = new Student();
 s.displayValues();
 }
}

4 / 14

declare parents: MathI extends java.rmi.Remote;
declare parents: Math extends java.rmi.server.UnicastRemoteObject;
public static void Math.main(String[] args) {...}

Regarding the second category (), one can use pointcuts and advices in order to
dynamically affect the application flow. Besides the code to be executed, the advice
declaration also indicates if the code should be executed before, after, or around (in-
stead of) each join point selected by the pointcut definition. Here is a small code snippet
that shows how to intercept a call to any constructor of Math that has been made from
an instance of Student, and change it to return a reference to the remote interface in-
stead:

pointcut mathNews(): call(Math.new(..)) && this(Student);
MathI around(): mathNews() {
 MathI iObj = null;
 try {
 iObj = (MathI) java.rmi.Naming.lookup("//127.0.0.1/math");
 } catch (Exception ex) {}
 return iObj;
}

With respect to the third category () there is not much to be said except the fact
that the current version of AspectJ does not support that kind of static crosscutting yet.
However, Soares et al. have already submitted a feature request to the AspectJ team on
this subject and there are good chances that it will be integrated in the next version of
AspectJ [SLB02]. The construct, which would extend AspectJ to allow adding excep-
tions to a method’s throws clause, looks like this:

declare throws: (* MathI.*(..)) throws java.rmi.RemoteException;

This declaration would add the RMI specific exception, RemoteException, to the
throws clause of all the methods of the MathI interface. The wildcards * and ..
have the same meaning as in any other AspectJ pointcut designator, i.e., match any re-
turn type and any method name, and any parameter list, respectively.

Another limitation of AspectJ is related to the return type of an around advice.
Currently, it is not possible to declare a “general” around advice for a group of meth-
ods because the return type has to be explicitly specified and it might differ from one
method to another. In our particular case, we can write something like:

pointcut callsToMath():
 (call(public float Math.sin(int)) ||
 call(public float Math.cos(int))) &&
 this(Student);
float around(): callsToMath() {
 float value = null;
 try {
 value = proceed();
 } catch (java.rmi.RemoteException ex) {}
 return value;
}

However, in this example we relied very much on the fact that the two methods of the
Math object return both a float value. If there had been a third method to return an

5 / 14

int value, then we would have had to write two different pointcuts and appropriate
around advices for each one.

Imagine now that the developer has several objects that s/he would like to “trans-
form” into RMI server objects and make them available to remote clients. Using the pre-
viously presented approach, s/he would have to rewrite a different aspect for each such
object, or at least define new pointcuts, introductions, and advices inside the same as-
pect but appropriately customized for each of his or her new objects. In both cases, s/he
would end up with a lot of duplicate code, which is not a very acceptable solution.

Of course, there are ways to get rid of duplicate code and increase reusability to a
certain degree, and one very nice solution is to use AspectJ idioms, such as Abstract
Pointcut, Template Advice, Pointcut Method, and so on [HUS03]. Most of these idioms
propose having abstract aspects that the developer would have to extend, and then de-
fine concrete pointcuts or overload operations in order to specialize them for his or her
specific needs. This approach relies on the premise that the developer has deep AspectJ
knowledge, which should not be a requirement as long as we want to make distribution
transparent to the application developer. S/he might be requested to customize some as-
pect parameters (e.g., Java-like variables), but not to write AspectJ syntax, or even
worse, write AspectJ syntax that should contain distribution code as well.

3 Generic Aspects to the Rescue

After the aspect-oriented solution proposed in the previous section, we look now at how
generic aspects can overcome some of the identified drawbacks and how they can help
improve reusability. Extensions to AspectJ are also proposed for the previously present-
ed limitations.

Generics, also commonly known as parameterized types or parametric polymor-
phism, is a well-established programming language feature whose advantages over dy-
namic approaches to generic programming (e.g., subtype polymorphism) are well-un-
derstood: safety (more bugs caught at compile time), expressivity (more invariants ex-
pressed in type signatures), clarity (fewer explicit conversions between data types), and
efficiency (no need for run-time type checks).

Generics have been used under several forms in different programming languages
for years. To name just a few, we can mention functors (parameterized modules) in
Standard ML and Caml, generics in Ada and Eiffel, and, probably what popularized ge-
nerics the most, the C++ Standard Template Library. Surprisingly, two of the last pro-
gramming languages on the market, Java and C#, do not support parametric polymor-
phism yet, but only subtype polymorphism. However, besides the generic extensions
that exist on both sides (e.g., GJ [BOS+98], for Java, and Gyro [clrgen03], for C#), there
are significant efforts to introduce generics support in both programming languages
[BCK+01, Jcp03, KS01]. In fact, both providers (Sun and Microsoft) offer already pro-
totype implementations of their compilers that support generics.

Generic parameters are type or value parameters about types. They allow us to
avoid unnecessary code duplication in statically typed languages. Programming lan-
guages may provide generic parameters not only for procedures or functions, but also
for classes, modules, packages, and so on. As aspects are just another unit of encapsu-
6 / 14

lation introduced by AOP, we look at the benefits of supporting generic aspects in As-
pectJ from the perspective of our distribution example.

In Figure 3, we present a generic RMI-based distribution aspect that would trans-

form any centralized application into an RMI-based distributed one, provided that we
supply it with three classes corresponding to the Interface, the Server, and the
Client. Moreover, the constraint that is set on the type parameters, requiring the
Server to implement the Interface, has to be met as well. Such a feature support
is usually referred to as constrained genericity. The syntax used in Figure 3 was in-
spired from the currently existing syntax proposals for supporting generics in Java and
C# programming languages.

aspect RmiDistributionAspect<Interface, Server, Client>
 where Server implements Interface {

 // Configuration
 String ipAddress = "serverHostIPaddressGoesHere";
 String serverName = "desiredServerNameGoesHere";

 // The developer should not touch anything below this line!!!

 String url = "//" + ipAddress + "/" + serverName;

 // Server-side changes
 declare parents: Interface extends java.rmi.Remote;
 declare throws: (public * Interface.*(..)) throws java.rmi.RemoteException;

 declare parents: Server extens java.rmi.server.UnicastRemoteObject;
 declare throws: (Server.new(..)) throws java.rmi.RemoteException;
 declare throws: (public * Server.*(..)) throws java.rmi.RemoteException;

 public static void Server.main(String[] args) {
 try {
 Server serverObj = new Server();
 java.rmi.Naming.bind(url, serverObj);
 } catch (Exception ex) {}
 }

 // Client-side changes
 pointcut serverNews(): call(Server.new(..)) && this(Client);
 Interface around(): serverNews() {
 Interface iObj = null;
 try {
 iObj = (Interface) java.rmi.Naming.lookup(url);
 } catch (Exception ex) {}
 return iObj;
 }

 pointcut callsToServer(Type T):
 call(public T Server.*(..)) && this(Client)
 T around(Type T): callsToServer(T) {
 T obj = null;
 try {
 obj = proceed();
 } catch (java.rmi.RemoteException ex) {}
 return obj;
 }
}

Fig. 3. Generic RMI-based Distribution Aspect

7 / 14

The body of the generic RMI-based distribution aspect follows the same ideas as
the ones presented in section 2, i.e., introductions, pointcuts, and advices for modifying
the static and dynamic structure of the original application.

The syntax proposed by Soares et al. [SLB02] for adding exceptions to a method’s
throws clause was a little bit extended to allow the developer to specify the visibility
of the methods as well (Fig. 3). In this way, when doing the modifications in the
Server class, we can specify that only public methods should throw RemoteEx-
ceptions. However, this solution still does not cover another case that might arise:
the Server class might have public methods providing services to some other local
classes, and thus those methods should not throw RemoteExceptions. To over-
come this, it would be nice to be able to specify something like:

// "All the public methods of the Server
// that can be found in the Interface as well"
declares throws:
 ((public * Server.*(..)) &&
 within(Interface)) throws java.rmi.RemoteException;

The within keyword specified above would have a different semantics than the one
used in current AspectJ pointcut designators. Moreover, the syntax for selecting the
methods would support the logical !, &&, and || operators as well.

With respect to the around advice limitation, we considered the System.Type
construct that is present in C# and mainly serves reflection purposes. In our case, we
define our pointcut that selects all the join points corresponding to calls to the Server
public methods that have been made from within Client objects, and moreover, we
bind the method return type Type at those join points (Fig. 3). This way we know
what return type to specify for the around advice.

With the current approach, having a concrete instantiation of the generic RMI-
based distribution aspect, the developer still needs to customize some configuration pa-
rameters with respect to the host where the Server object will be deployed and the
name that will be used to identify it. However, the instantiation of the generic RMI-
based distribution aspect is not yet fully automatic. It still requires the developer to an-
alyze his or her models, to figure out by him- or herself which are the classes corre-
sponding to the Interface, the Server, and the Client, and only then perform a
concrete instantiation.

4 Generic Model Transformations and Generic Aspects

In this section, after a brief presentation of the current trends in the domain of model
transformations, we show how generic concern-oriented model transformations could
help automatically customizing generic aspects according to the particular needs of
each application.

In the context of Model Driven Architecture (MDA) [MM01], model-to-model
transformations play a very important role since they are responsible for the possible
refinements that may occur between Platform Independent Models (PIMs), Platform
Specific Models (PSMs), and in-between the two in both directions. Moreover, the au-

8 / 14

tomatic generation of application code from a PSM is viewed as a model-to-model
transformation as well.

In the absence of a standard language for defining such model transformations, dif-
ferent approaches and technologies started to appear. For instance, one approach pro-
poses to encode model transformations in a procedural language using an API to the
model repository offered by a UML [uml03] tool. Another proposal that promises to
raise the level of abstraction of operations on UML models is to use UML’s action lan-
guage [uml03] as a way to procedurally define UML transformations [SPH+01]. One
interesting technique is to treat UML models as graphs and use the work that has been
already performed on graph transformation theory to define model transformations
[SWZ97, BEW02, Fuj03, SPG+03]. Logic programming languages have also been used
in the context of model transformations [Whi02, CDE+01]. [Mil02] proposes a graphi-
cal language for specifying model transformations based on extended UML object dia-
grams. Approaches based on XMI [xmi02] and XSLT [xslt03] to describe model trans-
formations exist as well [Wag01, PZB02]. UML’s OCL [WK98] has also been pro-
posed as a way to declaratively describe UML model transformations [PVJ02, SPL+01,
KWB03]. A brief overview of some of the previously mentioned approaches to model
transformations and some recommendations on the desirable characteristics of a lan-
guage for describing model transformations can be found in [SK03]. OMG [Omg03]
has also posted a Request for Proposals, called MOF 2.0 Query/Views/Transformations
RFP [mofqvt02], in order to fill this model transformation language gap and add the
much needed keystone to the MDA vision.

Generic concern-oriented model transformations, which were first introduced in
[Sil03] and then integrated as a basic constituent part of the Enterprise Fondue software
development method [SS03], propose to drive the refinement of models according to
the different concerns that the final application needs to incorporate. The genericity is
required in order to deal with the imminent differences that appear from one application
to the other.

In our particular example, the refinement needs to be performed along a middle-
ware-specific concern-dimension, namely RMI-based distribution, and the genericity
has to take care of those model elements in the RMI-based distribution concern space
that have to be customized for our particular application, namely the classes corre-
sponding to the Interface, the Server, and the Client. In Figure 4, we illustrate
how a concrete RMI model transformation affects the design of our originally central-
ized application when passing to an RMI-based distributed one. Even though the nota-
tion used in Figure 4 is fully UML compliant, the representation of model transforma-
tions is a pure intuitive one that, we believe, serves best the point that we would like to
make. We used a parameterized stereotyped class to indicate the generic RMI model
transformation. This class is further specialized into a concrete RMI model transforma-
tion by binding its type parameters. A constraint (not OCL compliant) is also enforced
on the type parameters of the generic RMI model transformation.

As one can easily notice, each change introduced by the concrete RMI model trans-
formation at design level has a corresponding element in the generic RMI-based distri-
bution aspect (presented in Figure 3) that would implement that change at code level
once it gets customized for that particular application. Moreover, provided that tool sup-
9 / 14

port is offered, the customization of the generic aspect can automatically be done based
on the binding of the type parameters of the generic model transformation, since both
the model transformation and the aspect use the same type parameters, namely the
MathI, Math, and Student classes.

To conclude, a one-to-one mapping should exist between generic concern-oriented
model transformations and generic aspects, and aspect generators should be used to in-
stantiate generic aspects based on the information used to specialize the corresponding
generic concern-oriented model transformations. In this way, we address a specific con-
cern, in our case RMI-based distribution, at two different levels (abstract and concrete)
and at two different layers (design and code) by applying model transformations specif-
ic to each layer (concern-oriented model transformations and aspects, respectively).

Fig. 4. A Generic/Concrete RMI Model Transformation

Student

MathI

+ sin (int) : float
+ cos (int) : float

Math

MathI

+ sin (int) : float
+ cos (int) : float

Math

java.rmi.Remote

java.rmi.server.UnicastRemoteObject

Student

<<ModelTransformation>>
RmiModelTransformation

Interface, Server, Client,
hostIP : String,
serverName : String

<<ModelTransformation>>
RmiModelTransformation

{ constraint:
 Server implements Interface }

<<bind>>
(MathI, Math, Student,
 “127.0.0.1”, “math”)
10 / 14

5 Conclusions

Based on a very simple example that transforms a centralized application into an RMI-
based distributed one, we emphasized the benefits that the developer could gain by pro-
viding support for generics at the level of aspect-oriented programming. To automate
the instantiation of generic aspects, we proposed to have a one-to-one association be-
tween generic concern-oriented model transformations and generic aspects, and to use
aspect generators to instantiate generic aspects based on the information used to spe-
cialize the corresponding generic concern-oriented model transformations.

Looking back at the four key elements that we identified in the definition of gener-
ative programming quoted in the introduction, i.e., (1) families of software systems, (2)
reusable implementation components, (3) customization, and (4) automation, we claim
to have them all addressed to a certain degree in this position paper. As families of soft-
ware systems, we addressed a narrow domain of distributed systems, namely that of
RMI-based distributed systems. Generic aspects are the reusable implementation com-
ponents that can be used to create several concrete instances of applications in the con-
sidered domain. The customization relies on the generics support and is made automatic
by using aspect generators out of generic concern-oriented model transformations.

References

[BCK+01] Bracha, G.; Cohen, N.; Kemper, C.; Marx, S.; Odersky, M.; Panitz, S. E.;
Stoutamire, D.; Thorup, K.; Wadler, P.: Adding Generics to the JavaTM Pro-
gramming Language. Participant Draft Specification, April 2001.

[BEW02] Bardohl, R.; Ermel, C.; Weinhold, I.: AGG and GenGED: Graph Transfor-
mation-Based Specification and Analysis Techniques for Visual Languages.
Electronic Notes in Theoretical Computer Science, 72(2), Elsevier Science
B.V., 2002.

[BOS+98] Bracha, G.; Odersky, M.; Stoutamire, D.; Wadler, P.: Making the Future
Safe for the Past: Adding Genericity to the Java Programming Language.
Proceedings of the 13th Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA, Vancouver, British Colum-
bia, Canada, October 18-22, 1998. SIGPLAN Notices, 33(10), ACM Press,
1998, pp. 183 – 200. More documents on GJ (including the specification)
can be found at http://www.research.avayalabs.com/user/wadler/gj/.

[ccm02] Object Management Group, Inc.: CORBA Components Specification, v3.0,
June 2002.

[CDE+01] Clavel, M.; Durän, F.; Eker, S.; Lincoln, P.; Marti-Oliet, N.; Meseguer, J.;
Quesda, J.: Maude: Specification and Programming in Rewriting Logic. The-
oretical Computer Science, 2001.

[CE00] Czarnecki, K.; Eisenecker, U. W.: Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[clrgen03] Microsoft, Inc.: Generics for C# and .NET CLR.
http://research.microsoft.com/projects/clrgen/, August 2003.

[com03] Microsoft, Inc.: COM (Component Object Model), COM+, DCOM (Distrib-
uted COM). http://www.microsoft.com/com/, August 2003.
11 / 14

[corba02] Object Management Group, Inc.: The Common Object Request Broker:
Architecture and Specification, v3.0, July 2002.

[ejb01] Sun Microsystems: Enterprise JavaBeansTM Specification, v2.0, August
2001.

[Fuj03] Fujaba Project Web Site, http://www.fujaba.de, August 2003.

[GJS+00] Gosling, J.; Joy, B.; Steele, G.; Bracha, G.: The Java Language Specification,
Second Edition. Addison-Wesley, 2000.

[HUS03] Hanenberg, S.; Unland, R.; Schmidmeier, A.: AspectJ Idioms for Aspect-Ori-
ented Software Construction. Proceedings of the 8th European Conference
on Pattern Languages of Programs, EuroPLoP, Irsee, Germany, June 25–29,
2003.

[Jcp03] Java Community Process: Add Generic Types To The JavaTM Programming
Language. Java Specification Request, JSR#14, http://www.jcp.org/jsr/
detail/14.jsp, August 2003.

[KHH+01] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold,
W. G.: An Overview of AspectJ. Proceedings of the 15th European Confer-
ence on Object-Oriented Programming, ECOOP, Budapest, Hungary, June
18-22, 2001. LNCS Vol. 2072, Springer-Verlag, 2001, pp. 327 – 353.

[KLM+97] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C. V.;
Loingtier, J.-M.; Irwin, J.: Aspect-Oriented Programming. Proceedings of
the 11th European Conference on Object-Oriented Programming, ECOOP,
Jyväskylä, Finland, June 9-13, 1997. LNCS Vol. 1241, Springer-Verlag,
1997, pp. 220 – 242.

[KS01] Kennedy, A.; Syme, D.: Design and Implementation of Generics for the
.NET Common Language Runtime. Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI,
Snowbird, UT, USA, June 20-22, 2001. SIGPLAN Notices 36(5), ACM
Press, 2001, pp. 1 – 12.

[KWB03] Kleppe, A.; Warmer, J.; Bast, W.: MDA Explained: The Practice and Prom-
ise of Model Driven Architecture. Addison-Wesley, 2003.

[Mey92] Meyer, B.: Applying Design by Contract. IEEE Computer, 1992, pp. 40 –
51.

[Mey02] Meyer, B.: Design by Contract. Prentice Hall, 2002.

[Mil02] Milicev, D.: Automatic Model Transformations Using Extended UML Object
Diagrams in Modeling Environments. IEEE Transactions on Software Engi-
neering, 28(4), 2002, pp. 413 – 431.

[MM01] Miller, J.; Mukerji, J.: Model Driven Architecture (MDA). Object Manage-
ment Group, Draft Specification ormsc/2001-07-01, July 9, 2001.

[MMS02] Mili, H.; Mcheick, H.; Sadou, S.: CorbaViews – Distributing Objects that
Support Several Functional Aspects. Journal of Object Technology, 1(3),
Special Issue: TOOLS USA 2002 Proceedings, pp. 207 – 229.

[mofqvt02] Object Management Group, Inc.: MOF 2.0 Query/Views/Transformations
RFP. http://cgi.omg.org/cgi-bin/doc?ad/02-04-10, 2002.

[net03] Microsoft, Inc.: .NET. http://www.microsoft.com/net/, August 2003.

[Omg03] Object Management Group, Inc., http://www.omg.org/, August 2003.

[PVJ02] Pollet, D.; Vojtisek, D.; Jézéquel, J-M.: OCL as a Core UML Transformation
12 / 14

Language. Workshop on Integration and Transformation of UML Models,
WITUML, at ECOOP, University of Málaga, Spain, June 10-14, 2002.

[PZB02] Peltier, M.; Ziserman, F.; Bézivin, J.: On Levels of Model Transformation.
Proceedings of XML Europe, Paris, France, June 12-16, 2000.

[rmi99] Sun Microsystems: JavaTM Remote Method Invocation Specification. Revi-
sion 1.7, JavaTM 2 SDK, Standard Edition, v1.3.0, December 1999. http://
java.sun.com/j2se/1.3/docs/guide/rmi/index.html.

[Sil03] Silaghi, R.: Generic Concern-Oriented Model Transformations Meet AOP.
Proceedings of the 1st International Workshop on Model-driven Approaches
to Middleware Applications Development, MAMAD, at the ACM/IFIP/
USENIX International Middleware Conference, Rio de Janeiro, Brazil, June
16-20, 2003. PUC-Rio Press 2003, Middleware 2003 Companion, pp. 307 –
311. Also available as Technical Report, EPFL-IC-LGL N° IC/2003/??? (to

appear).

[SK03] Sendall, S.; Kozaczynski, W.: Model Transformation the Heart and Soul of
Model-Driven Software Development. Available as Technical Report, EPFL-
IC-LGL N° IC/2003/052, July 2003.

[SLB02] Soares, S.; Laureano, E.; Borba, P.: Implementing Distribution and Persis-
tence Aspects with AspectJ. Proceedings of the 17th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA, Seattle, WA, USA, November 4-8, 2002. SIGPLAN
Notices 37(11), ACM Press, 2002, pp. 174 – 190.

[SPG+03] Sendall, S.; Perrouin, G.; Guelfi, N.; Biberstein, O.: Supporting Model-to-
Model Transformations: The VMT Approach. Proceedings of the 1st Interna-
tional Workshop on Model Driven Architecture: Foundations and Applica-
tions, MDAFA, University of Twente, Enschede, The Netherlands, June 26-
27, 2003. Published as Technical Report, TR-CTIT-03-27, University of
Twente, 2003, pp. 61 – 72.

[SPH+01] Sunyé, G.; Pennaneac'h, F.; Ho, W-M.; Le Guennec, A.; Jézéquel, J-M.:
Using UML Action Semantics for Executable Modeling and Beyond. Pro-
ceedings of the 13th Conference on Advanced Information Systems Engi-
neering, CAiSE, Interlaken, Switzerland, June 4-8, 2001. LNCS Vol. 2068,
Springer-Verlag, 2001, pp. 433 – 447.

[SPL+01] Sunyé, G.; Pollet, D.; Le Traon, Y.; Jézéquel, J-M.: Refactoring UML Mod-
els. Proceedings of the 4th Conference on the Unified Modeling Language:
Modeling Languages, Concepts, and Tools, UML, Canada, 2001. LNCS Vol.
2185, Springer-Verlag, 2001, pp. 134 – 148.

[SS03] Silaghi, R.; Strohmeier, A.: Integrating CBSE, SoC, MDA, and AOP in a
Software Development Method. Proceedings of the 7th IEEE International
Enterprise Distributed Object Computing Conference, EDOC, Brisbane,
Queensland, Australia, September 16-19, 2003 (to appear). Also available as
Technical Report, EPFL-IC-LGL N° IC/2003/??? (to appear).

[SWZ97] Schürr, A.; Winter, A.; Zündorf, A.: The Progres Approach: Language and
Environment. In Chapter 13 of Rozenberg, G. (eds), Handbook of Graph
Grammars and Computing by Graph Transformation: Volume II Applica-
tions, Languages, and Tools. World Scientific Publishing, 1997.

[uml03] Object Management Group, Inc.: Unified Modeling Language Specification,
13 / 14

v1.5, March 2003.

[Wag01] Wagner, A.: A Pragmatic Approach to Rule-Based Transformations within
UML using XMI.difference. Workshop on Integration and Transformation of
UML Models, WITUML, at ETAPS, 2001.

[Whi02] Whittle, J.: Transformations and Software Modeling Languages: Automating
Transformations in UML. Proceedings of the 5th Conference on the Unified
Modeling Language: The Language and its Applications, UML, Dresden,
Germany, September 30 - October 4, 2002. LNCS Vol. 2460, Springer-Ver-
lag, 2002, pp. 227 – 242.

[WK98] Warmer, J.; Kleppe, A.: The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1998.

[ws03] World Wide Web Consortium: Web Services. http://www.w3.org/2002/ws/,
August 2003.

[xmi02] Object Management Group, Inc.: XML Metadata Interchange (XMI) Specifi-
cation, v1.2, January 2002.

[xslt03] World Wide Web Consortium: eXtensible Stylesheet Language Transforma-
tions, v1.0. http://www.w3.org/TR/xslt/, August 2003.
14 / 14

	Better Generative Programming with Generic Aspects
	1 Introduction
	2 Motivating Example
	3 Generic Aspects to the Rescue
	4 Generic Model Transformations and Generic Aspects
	5 Conclusions

