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For the Model Driven Architecture (MDA) vision to become a mainstream
reality, high-level languages are needed to concisely express and execute model
transformations. Both generative and graph transformation approaches for model
transformation specification and execution have much to offer in this regard. If
one were to combine techniques from both worlds, would one end up with a
powerful and effective tool or a complicated and inconsistent mess? In this short
paper, I briefly highlight how I have combined some of these techniques in a
model transformation language called Genermorphous (Gmorph for short),
which attempts to package these two powerful techniques into a single coherent
language. My goal with this short paper is to stimulate discussion in the
workshop towards the discovery of optimal ways to use generative and graph
rewriting techniques together for MDA-oriented transformation languages.

1. Introduction

The intention of the MDA initiative is to automate the generation of platform specific
models (PSM for short) from platform independent models (PIM for short) and code
from PSMs, and to ensure synchronization between models both in the same and
different levels. These activities, together with other model engineering activities, such
as, refactoring and pattern application, can be described in terms of model
transformations. A model transformation takes one or more source models as input and
produces one or more target models as output, following a set of rules.

One key element needed in the realization of the MDA vision is high-level
languages that support the specification and execution of model transformations.
Unsurprisingly, there are a number of challenges one needs to overcome in defining a
language for model transformation [SK03]. On the one hand, it must provide for
complete automation, and it must be expressive, unambiguous, and Turing complete
for it to be generally applicable. On the other hand, it must balance ease-of-
understanding, precision, concision and ease-of-modification.
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2. Graph Transformation and Generative Programming

Graph transformation systems make use of graph rewriting techniques to manipulate
graphs [Roz97]. A graph transformation is defined in terms of a set of production rules.
A production rule consists of a left-hand side (LHS) graph and a right-hand side (RHS)
graph. Such rules are the graph equivalent of term rewriting rules, i.e., intuitively, if
the LHS graph is matched in the source graph, it is replaced by the RHS graph. Graph
transformation techniques have particular relevance to transformations performed on
graphical models because graphical models are themselves graphs in one form or
another. A further draw-card of graph transformation is the ability to use pattern
matching in source element selection. Graph transformation systems use the LHS
graph of each rule as a pattern to match, abstracting the mechanism of pattern matching
from the rule specifier.

Generative Programming (GP) is an approach that allows one to automatically
generate software from a generative domain model [CE00]. A generative domain
model is a model of a system family that consists of a problem space, a solution space,
and the configuration knowledge. The problem space defines the appropriate domain-
specific concepts and features. The solution space defines the target model elements
that can be generated and all possible variations. The configuration knowledge
specifies illegal feature combinations, default settings, default dependencies,
construction rules, and optimization rules. GP introduces generators as the mechanisms
for producing the target. In general, a GP generator performs the following tasks:

e Checks the validity of the input specification and reports warnings and
errors if necessary

o Completes the specification using default settings if necessary
e  Performs optimizations
e  Generates the target code

GP techniques have particular relevance to transformations that map one model to
another different model, because the description of the mapping rules can be expressed
concisely. A further draw-card of GP is the ability to make use of parameterization in
the generation of models. Parameterized code generation is supported by such
mechanisms as templates, boilerplates, frames, etc.

The underlying mechanism of graph transformation is replacement, which, in the
context of MDA, makes it well suited to model refactoring, synchronization and
refinement. In contrast, the underlying mechanism of GP is generation, which, in the
context of MDA, makes it well suited to view generation, forward engineering and
reverse engineering. These aspects of both techniques are complementary and provide
good coverage of the requirements for model transformation in MDA. This supposition
motivates an amalgamation of techniques, which is discussed in the next section with
the presentation of the Genermorphous language (Gmoph for short).
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3. The Gmorph Language

The Gmorph language [SMVO03], currently under development by the author, is
intended for the specification and execution of model transformations, where source
and target models are instances of MOF-compliant metamodels. The language
embodies a merger of techniques from both graph transformation and GP approaches.
In particular, Gmorph specifications are largely graphical in nature and consist of
production rules that define left-hand side and right-hand sides, following the
declarative style of graph transformations. And, both the LHS and RHS descriptions
offer parameterization and direct mapping, following the GP style.

Figure 1 shows a Gmorph transformation rule for mapping attributes of a UML
class, part of the source model, to fields of an existing Java class, part of the target
model. The transformation rule consists of a signature, shown at the top of Figure 1,
the LHS of the rule, shown on the left side, and the RHS of the rule, shown on the right
side. The rule was defined such that the LHS and RHS graphs conform to the
metamodels of the source and target models, respectively. The metamodel used for the
source model is defined by the UML 2.0 specification [Omg03], and the metamodel
used for the target model is defined by Dedic and Matula in [DMO03].

The signature of the rule defines the name of the rule: “UML Attributes to Java
Fields”, and the input and output parameters of the rule', which happen to be a Java
class, J1. The LHS defines both a pattern to match and a guard condition that must be
fulfilled for the rule to be allowed to fire. The graphical part of the rule consists of two
object boxes with a composition relationship between them and a box that encircles the
object AT1. The two associated objects define a pattern that is to be matched by the
rule. In addition, one or more attributes of C1, matching AT1, are to be matched. This
multi-match is defined by the box with the expression “Col: A, 1..*” in the top left-
hand corner. This region signifies a collection of matches, which are referenced by the
label A; this collection has a matching range of 1..*, which means that one or more
matches are allowed.

The rule is allowed to fire only if a match can be found for the LHS pattern. This
means that there should exist a class in the source model that has the same name as the
supplied Java class and has at least one attribute. The first constraint is defined by the
textual part of the LHS under the heading “Additional Selection Constraints”. It is an
OCL predicate that ensures equality between the names of Cl and J1. The second
constraint is defined by the 1..* multiplicity of A. Having a lower bound of 1 implies
that C1 must have at least one attribute matching ATI.

! It is possible to compose transformation rules in Gmorph; see [SMV03] for more details.
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Rule: UML Attributes fo Java Fields
Input: J1: Java::JavaClass

Output: J1: Java::JavaClass
______________________ ]

ct: Col: B, 1.*
CES {new}
J1i: /features /F1:
JavaClass Field
Col: A, 1. /ownedAfjribute

Instance Mappings

/ATL:
Attribute foreach ain A {
a.AT1 --> Flin biB;
)3
Additional Selection Constraints Type Mappings

Cl.name = J1lsimpleName;
ame mplefiame UML::Attribute <--> Java::Field {
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} name <-> name,
| scope <-> scope,

I visibility <> visibility,
| isConstant <-> isFinal,
: (false) -> isSynthetic,
| (false) -> isTransient,
: (false) -> isVolatile,
| isDerived <- (false)
|
|
|
|
:
|
|
|
|
I
|
|
|
:
|
|

¥

UML:: ScopeKind <--> Java::ScopeKind {
sk_instance <-> instance,
sk_classifier <-> classifier

¥

UML:: VisibilityKind <--> Java:: VisibilityKind {
vk_public <-> public,
vk_protected <-> protected,
vk_private <-> private,
vk_package <-> package

Figure 1: A Gmorph transformation rule, which maps UML attributes to
Java fields.

If the LHS pattern is matched, then the RHS is applied to the target model. Unlike in
Graph Transformation approaches, creation (and deletion for that matter) are explicitly
stated. Thus, only the Field objects in the RHS depicted in Figure 1 are created
(signaled by the “new” predefined identifier placed within curly brackets). The
JavaClass J1 is part of the RHS so as to indicate how the new elements are integrated
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into the already existing (target) model. The two text sections of the RHS, shown
below the diagram, define the mappings between the elements in the source and target
models. The instance mapping relates each AT1 element to a newly created F1
element. The type mappings relate the different properties of each element. In some
cases, the mapping is bi-directional (denoted by the <-> operator), and in the other
cases, it is only in a single direction (denoted by the <- and -> operators). Note that the
direction of the arrow indicates in which direction the mapping can be performed.
Most of the configuration information defined by the “Type Mappings” clause can be
defined independently of the transformation, so as to be available for reuse by other
rules.

In summary, the rule depicted in Figure 1, takes a Java class as input and finds the
corresponding UML class; it matches the corresponding UML class with all its
attributes, part of the source model, and generates a field in the supplied Java class,
part of the target model, for each attribute matched.

Figure 2 shows an alternative form of the LHS pattern, shown in Figure 1. It uses
the notation of the model directly, in contrast to the metamodel objects (which is
independent of the models form). More details on this alternative view for a LHS

pattern can be found in [Sen03].

<Cl>
-<AT1> {Col: A, 1.*}

Additional Selection Constraints
Cl.name = J1l.simpleName;

Figure 2: Alternative graphical view of the LHS of rule depicted in Figure 1

Reflecting upon the example, it is interesting to see the way the pattern matching and
graph description techniques of Graph Transformation have been combined with the
mapping and parameterization techniques of GP. The example also highlights how one
can integrate model fragments, as defined by the RHS, into existing models.

5. Summary

One key element needed in the realization of the MDA vision is high-level languages
that support the specification and execution of model transformations. In this short
paper, I briefly highlighted how I have combined some of the techniques of Graph
Transformation and Generative Programming in a model transformation language
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called Genermorphous (Gmorph for short), which attempts to package these two
powerful techniques into a single coherent language.
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