Generation of Implementations for the
Model Driven Architecture with
Syntactic Unit Trees

Marek Majkut
Intershop Research, Intershop Tower,
07740 Jena, Germany
m.majkut@intershop.com

Bogdan Franczyk
Universitat Leipzig, Marschnerstrafle 31,
04109 Leipzig, Germany
franczyk@wifa.uni-leipzig.de

1 Introduction

Syntactic unit trees have been originally introduced as a genera-
tive implementation technology for software product lines | ,
[]. A syntactic unit is an elementary component of a solution
space in the generative domain model |]. Syntactic units are ex-
tendible through their extension spots. An extension spot is a place
in a unit where another unit can be inserted. Extension spots are
variation points in unit configurations consisting of multiple units.
Syntactic units are source code fragments that can be reduced to
non-terminal symbols of a grammar by application of grammar re-
duction rules. Extension spots are treated during reduction as non-
terminal symbols of a grammar. Non-terminal symbols represent
types of syntactic units and extension spots. Nodes of trees keep
references to syntactic units rather than units themselves. A node
can reference at most one unit. A unit can be referenced from mul-
tiple nodes.

A configuration of syntactic units is generated by scanning a tree
from top to bottom, creation of peer units (isomorphic unit copies)
and merging the peers. Units used for creation of peers are also called
base units. During the merging process, peers created for nodes po-
sitioned lower in the hierarchy are inserted into extension spots of

2 Marek Majkut, Bogdan Franczyk

peers created for upper nodes. Since a syntactic unit can be refer-
enced from multiple nodes, multiple peers can be created for one
base unit.

A syntactic unit can be for instance a Java class skeleton:

public class Sample {
Samplel varil;
Sample2 var2;

public void samplel(int argInt) {
<#methodlStatements:BlockStatements#>

}

public void sample2(float argFloat) {
<#method2Statements:BlockStatements#>

+

public void sample3(String argString) {
<#method3Statements:BlockStatements#>

}

}

In method bodies there are extension spots denoted by names method1-
Statements, method2Statements and method3Statements. Each
extension spot has the type BlockStatements, which is a non-terminal
symbol of the Java grammar as presented in | | chapter 18.

A syntactic unit can be also any other fragment of source code
that can be reduced to a non-terminal symbol, e.g.

varl.sampleMethodl(argInt);
and
var2.sampleMethod2(argFloat) ;

can be reduced to the non-terminal symbol Fxpression.

Figure 1 depicts an example of a syntactic unit tree with nodes 1,
3 and 7 assigned with units SU1, SU3 and SU7, respectively. The unit
SU1 can represent the skeleton class and units SU3 and SU7 can be
the expressions above. Remaining nodes can be assigned afterwards
as shown in figure 2. This figure depicts also generated peer units

Generation of Implementations for the MDA with SUT 3

extension spots

Fig. 1. Example of a syntactic unit tree with incomplete assignment

and a generated configuration. The unit SU46 has two peers because
it is assigned to two nodes.

Syntactic unit trees are a very powerful and flexible technology
for configuration of systems from elementary source code compo-
nents. Unlike templates and frames | |, units do not contain
configuration information. This information is kept in the tree stuc-
ture. Nodes of unit trees can have not only hierarchical relationships
(node - subnodes) but also additional relationships, which denote
for instance that multiple nodes must always be assigned with the
same unit or that the contents of one unit is a name of another unit.
This approach to construction of systems from elementary compo-
nents can also be used with any other kind of extendible components

[J

4 Marek Majkut, Bogdan Franczyk

base units peer units

(D)-------- »|at |a2 |a3] a4 |SU1 —— [al'[a2 [a3'] a4']

7777777 > b1 [b2 [b3]sU2 ——=> [b1'[b2[b3]

77777 > c |sus —

HE

] el' | e2'

ed' ‘

|
|
|
|
|
L
|
A\ 4
E
H
(V)
E
w
w
cC
o
\

—
— h

generated unit configuration

[ar[b1'[o [b2] & [b3 a2 [eT | d" [62 | g [e8] a8 | I |a¥ |

Fig. 2. Completely assigned tree with base units, generated peer
units and configuration

2 Syntactic Unit Trees and UML

Unified Modeling Language | | is an OMG standard for speci-
fying, constructing, visualizing and documenting the artifacts of soft-
ware. It is also one of the fundamental standards of the Model Driven
Architecture. We will first discuss the connection between UML and
SUT, and in the next section we will show how SUT fits in the MDA.

UML consists of a number of notations that can express various
kinds of relationships between software artifacts. Information from
different kinds of diagrams should be transformed into source code

Generation of Implementations for the MDA with SUT 5

for deployment. Since the model information is distributed among
multiple diagrams and specifications (expressed for instance with
action languages), the resulting source code can be generated in form
of units that can be assigned to a unit tree. A unit tree can be
a result of model transformation. The advantage of syntactic unit
trees is an arbitrary partitioning of source code and the possibility
of evolutionary assignment of units to unassigned nodes. SUT can
be implementated with XML. It is important to note that XML
elements representing the tree nodes contain references to units and
not the units.

Figure 3 illustrates the concept of generation of a unit tree and
a unit configuration from multiple diagrams, object action language
specifications and hand-coded units.

3 Syntactic Unit Trees for the Model Driven
Architecture

The Model Driven Architecture is an OMG initiative to system
developement based on models with various levels of abstraction
[]. Models at a higher level of abstraction contain less plat-
form specific information than lower models. The MDA is based on
MOF (Meta-Object Facility) [], CWM (Common Warehouse
Metamodel) |] and UML. MDA can use furthermore XML
[| for storing the structure of models, XMI |] and XSLT
[| for exchanging information and model transformations.

The concept of the MDA is to use models at higher level of ab-
straction (Computation Independent Model, Platform Independent
Model) for transformation into models that are closely related with
the deployment platform (Platform Specific Models). Transforma-
tion can be performed by use of XSLT or other transformation tech-
niques, e.g. | |. In the MDA definition | |, source code is
a model that has the salient characteristic that it can be executed
by a machine. In this context, syntactic unit trees can be regarded
as platform specific models. The structure of unit trees and units
can be created by transformation of other platform independent or
platform specific models. Figure 4 depicts various kinds of transfor-
mations that are possible between MDA models and syntactic unit
trees.

6 Marek Majkut, Bogdan Franczyk

c1 varl c3

n
C
3

c2 ca

sampleMethod1()

units (source %de fragments)
o O

sampleMethod1()

sampleMethod2()—»

c2 c4 additional units
from action languages
or hand-coded

Fig. 3. Generation of a tree and unit configuration from UML mod-
els, object action language specifications and hand-coded units

The advantages of using syntactic unit trees as platform specific
models can be summarized as follows:

— syntactic unit trees can keep units (source code fragments) gen-
erated from various kinds of models, where each model provides
only a part of the information required for the system,

— syntactic unit trees can be transformed from models having com-
mon and variable features specific to software product lines,

— the mapping between elements of platform independent or spe-
cific models onto nodes and units is easier to perform than map-
pings to elements of other generative methods based e.g. on tem-
plates or frames: nodes have basically only hierarchical relation-

Generation of Implementations for the MDA with SUT 7

PIM PIM
additional model
/ or information
SUT SUT
PSM PSM
additional model
/ or information
SUT SUT

PIM

SUT

PSM

SUT

hand-coded
units

or tree
adjustments

hand-coded
units

or tree
adjustments

Fig. 4. Possible transformations of MDA models into SUT

ships and mappings to units are independent of their configura-

tion,

— syntactic unit trees can be used for any language and environ-
ment,
— syntactic unit trees can be the result of transformation of models
that do not contain sufficient information to generate a complete
system, required information can be added by hand-coding addi-
tional units in any part of a tree.

References

Bas97.

BBCEOL.

Paul G. Bassett. Framing Software Reuse. Yourdon Press Computing Series,

1997.

Barbara Barth, Greg Butler, Krzysztof Czarnecki, and Ulrich Eisenecker.
Generative programming. In ECOOP 2001 Workshops, Panel and Posters,
Budapest, Hungary, June 2001, volume 2323 of Lecture Notes in Computer

Science. Springer Verlag, 2001.

8 Marek Majkut, Bogdan Franczyk

CEO00. Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison Wesley, 2000.

GJB00. James Gosling, Bill Joy, and Gilad Bracha. Java Language Specification.
Addison-Wesley, 2nd edition, 2000.

Maj03. Marek Majkut. Unit-Oriented Programming with Source Unit Trees. PhD
thesis, University of Jena, 2003.

MDAO1. Model Driven Architecture, Document number ormsc/2001-07-01, 2001.

Obj01. Object Management Group. Common Warehouse Metamodel Specification,
2001.

Obj02. Object Management Group. Meta-Object Facility Specification, 2002.

Obj03a. Object Management Group. MDA Guide Version 1.0.1, 2003.

Objo3b. Object Management Group. OMG Unified Modeling Language Specification,
2003.

Obj03c. Object Management Group. XML Metadata Interchange Specification, 2003.

Wil03. E.D. Willink. Umlx: A graphical transformation language for mda. Technical
report, Thales Research and Technology Limited, 2003.

Wor99. World Wide Web Consortium. XSL Transformations, 1999.

Wor00. World Wide Web Consortium. FEztensible Markup Language 1.0 (Second
Edition), 2000.

	Generation of Implementations for the Model Driven Architecture with Syntactic Unit Trees
	

