

THALES recommendations for the final OMG standard

on

Query / Views / Transformations

Benoît Langlois
benoit.langlois@thalesgroup.com

Nicolas Farcet
nicolas.farcet@thalesgroup.com

THALES Research & Technology France
MIRROR Pilot Program1
Domaine de Corbeville

91404, ORSAY CEDEX
FRANCE

August 29, 2003

Abstract

Model transformation is at the core of the OMG’s Model Driven Architecture™ (MDA). The
current submission process on the OMG MOF 2.0 Query/Views/Transformation (QVT)
Request for Proposals (RFP) [1] elicited eight initial submissions and currently, five revised
submissions are still competing. IBM has formulated, in response to the eight first
submissions, a set of recommendations for the final standard [8]. This paper enhances IBM
recommendations with an additional user point of view.

This paper, based on user criteria, presents recommendations gathered from THALES
experience. These end-user recommendations are expressed in terms of IBM technical
recommendations. Finally, we propose a candidate technical architecture to harmonize the
positions of tool developers and end-users.

1 MIRROR is a THALES Pilot Program on the MDA.

mailto:benoit.langlois@thalesgroup.com
mailto:nicolas.farcet@thalesgroup.com

1. Introduction

Model transformation is at the core of the MDA and particularly at the core of the model-
driven software engineering chains. The major stake for a user is to capitalize on the software
engineering expertise (PIM to PIM, PIM to PSM, PSM to PSM transformations, model
quality, documentation…) to build a rationalized software engineering tool chain with the
financial objective to increase the ROI (return on investment) of software production. In an
industrial environment, the main expectation is to have portable and durable query / view /
transformation (QVT) expertise, and this concerns multiple communities of QVT actors.
These are QVT designers, designing model transformations, QVT developers, coding rules,
and more largely architects, appreciating model transformation impacts on architecture, as
well as process engineers, ensuring model transformation-aware methodology applicability.

The MOF 2.0 Query / Views / Transformations (QVT standard) should meet such user
requirements to be fully adopted. The OMG MOF 2.0 Query/Views/Transformation (QVT)
Request for Proposals (RFP) resulted in eight initial submissions and currently, five revised
submissions are still competing. IBM has proposed twelve technical recommendations, in
response to these eight initial submissions, to have a standard at the level of its ambitions.
THALES, in this paper, proposes seven additional recommendations with a user point of view.

Section 2, on the ground of a set of user analysis criteria, proposes a set of user
recommendations. Section 3 analyses IBM technical recommendations with our QVT user
standpoint. Finally, section 4 presents a technical architecture for the QVT Standard, meant to
address most of these recommendations.

In section 4.1, the proposed reflective and layered architecture is a result of the joint THALES /
INRIA / CEA MOTOR project. Additional contact points: Jean Bézivin, INRIA/Irin-
Université de Nantes, France, Jean.Bezivin@sciences.univ-nantes.fr; Jean-Marc Jézéquel,
INRIA/Irisa-Université de Rennes, France, jezequel@irisa.fr.

2. THALES recommendations

This section proposes a set of user recommendations for the MOF 2.0 QVT RFP. These
recommendations synthesize the analysis criteria presented in the next section.

2.1. Analysis criteria

The selection of user analysis criteria for the QVT standard must not directly target the QVT
technical standard itself, otherwise it would be another technical analysis, but shall rather
focus on quality factors to be satisfied from an end-user point of view. Four quality factors are
introduced here: portability, maintainability, utilisability and functionality (ISO 9126 standard
terminology, [5]). A further study should analyze all quality factors defined in the ISO 9126
or in the IEEE 830 standards [6].

The four quality factors are presented in the following tables with a short definition, a set of
stakes and a set of means satisfying the considered factor quality and a level of requirement
(high, medium or low). In the following text, a “QVT work product” is a piece of information

 2

mailto:Jean.Bezivin@sciences.univ-nantes.fr
mailto:jezequel@irisa.fr

or a physical entity, in relation with QVT, produced or used by the activities of the Query /
Views / Transformations Engineering processes2. It can be a QVT rule, a QVT library, a QVT
COTS’s, a QVT model…

Portability

Definition: Ability to move a QVT work product from one platform to another. Easiness
of this moving.

Stakes:

• [S1.1]: Raise the durability of QVT work products, allowing capitalization.
• [S1.2]: Be tool-independent.

Means:

• [M1.1]: The semantics of the QVT standard shall be complete, consistent and
unambiguous.

• [M1.2]: The tool developers shall respect the QVT standard.

Level of requirement: High, in order to maintain the ROI of software production across
different platforms.

Maintainability

Definition: Ability to make evolve and integrate QVT work products. Effort required to
make evolve and integrate QVT work products.

Stakes:

• [S2.1]: Reduce maintenance costs.
• [S2.2]: Have durable software engineering chains thanks to their ability to adapt

to ever evolving environments, e.g. platforms, standard evolution, model
transformation specifications.

Means:

• [M2.1]: Reduce QVT work product production and evolution time.
• [M2.2]: Facilitate QVT work product deployment and integration.
• [M2.3]: For scalability purposes, have a language easing QVT work product

design and realization.

This quality factor does not concern only the tools but also the QVT standard. Scalability
is representative: the complexity must be reduced as much as possible to express and
modify, as simply as possible, QVT work products. Reusability efficiency
(generalization / specialization, pattern or libraries usage / design…) is also another
aspect to be treated by the QVT standard.

Level of requirement: High, in order to maintain the ROI and to have durable
development platform. This point is key in an industrial context.

2 This definition is an adaptation of the SPEM work product definition [4].

 3

Usability

Definition: Ability to use the QVT language to produce QVT work products. Effort
required to produce QVT work products.

Stakes:

• [S3.1]: Improve QVT language expressiveness and efficiency.
• [S3.2]: Facilitate the genericity and the customization of the QVT work products.
• [S3.3]: Ensure QVT work product composition capability.
• [S3.4]: Offer the ability to support multiple semantics3 for multiple communities

of QVT actors (easing production and communication).

Means:

• [M3.1] (satisfying [S3.1] and [S3.2]): Have a language facilitating the
learnability and the understandability of the QVT Rules. This aspect concerns
only the concrete syntax of a QVT language.

• [M3.2] (satisfying [S3.4] that implies a reflexive approach of QVT): Have
abstract to concrete syntax transformations, but also transformations from one
semantics into another.

Level of requirement:
• [S3.1]: Medium, compared to the previous quality factors.
• [S3.2] and [S3.3]: High to improve the ROI.
• [S3.4]: High: the QVT standard has to be sufficiently open to cover all QVT

aspects of the model software engineering.

Functionality

Definition: Ability to actually support QVT work product production and usage. Level of
compliance4.

Stake:

• [S4.1]: Ensure compliance of the tool with the QVT Standard.
• [S4.2]: Ensure interoperability between tools.

Means:

• [M4.1]: Have a complete and unambiguous semantics of execution specification
(structure and behavior), for portability (see [S1.2] and [M1.2]) and
interoperability between tools.

• [M4.2]: Have tools respecting this semantics of execution: the successive states
of the model shall be determinist (see [M1.2]).

Level of requirement: High, for the same reasons than the portability quality factor.

3 Each developer community expect a QVT language, e.g. object-oriented, functional or logic languages.
However, language semantics must not be limited to the single developer point of view. For example, for a QVT
design with a model approach, a simple graphical semantics with textual notations based on OCL can be
sufficient.
4 Functionality does not concern here the set of functions proposed to produce and use QVT work products but
the capability to support this production and this usage.

 4

2.2. THALES recommendations

Here is listed a first set of user recommendations that should meet the QVT user community
expectations about the QVT standard.

THALES Recommendation 1

[TR1] Ensure QVT work product portability

Users require portability. Portability allows to acquire and diffuse QVT expertise [S2.2]
within a heterogeneous but coherent environment [S1.2], [S4.1], [S4.2] and, as a
consequence, to have durable QVT work products [S1.1].

In short, on different platforms, the same QVT specification has to produce the same effects.

Would the effects be different, either one of the platform does not respect the QVT standard,
or the standard is incomplete and / or inconsistent and / or ambiguous. Or both.

Thales Recommendation 2

[TR2] Ensure QVT work product durability

QVT work products, and especially transformations, are at the core of the software
engineering chain. They capitalize a software engineering expertise of many years from many
actors being within or outside the enterprise, see [S2.1], [S2.2], [S3.2] and [S3.3]. In a
heterogeneous community, portability contributes to the durability of QVT work products
[S1.1].

Thales Recommendation 3

[TR3] Ensure QVT work product composition capability

This point concerns the possibility, at a fine and a large scale, to easily connect a QVT work
product to another and also the possibility to connect a QVT work product to some external
QVT work product. Connection implies the possibility to express a complex transformation in
terms of simpler self-contained transformations. Connection can be resolved statically or
dynamically at the runtime.

 5

Thales Recommendation 4

[TR4] Have an open and unified QVT standard

It is illusive to restrict the QVT standard to only one paradigm [S3.4]. The debate on the
imperative vs. declarative style is illustrative. The user has an opportunistic attitude: take the
most efficient formalism in response to the problem he has to resolve. The user has also his
preferences and his experience: today, most of the developers use a procedural language. The
QVT standard shall be open to offer many paradigms, but in a unified way, in order to have
portable QVT work products [S1.1], [S4.1] and [S4.2].

Thales Recommendation 5

[TR5] Have the most efficient and expressive QVT language by concern

A textual language is not adapted for communication. Reciprocally, a graphical language is
not adapted for detailed rule description. Actually, the QVT standard has to allow this
separation of concerns. Each QVT language shall meet consistent purposes required by one
concern in order to have efficient and expressive QVT languages, see [S3.1], [S3.4].

3. IBM recommendations considered from THALES user-
driven point of view

This section positions THALES recommendations with respect to IBM recommendations. IBM
technical recommendations are considered from THALES more user-driven point of view.

IBM Recommendation 1

[IR1] Support an hybrid approach to transformation definitions

We agree with this recommendation (see [TR4]) and particularly with the citation of Adam
Bosworth. The difference we make is that declarative and imperative styles are two kinds of
paradigms. Each paradigm is described with a semantics and it is possible to mix different
paradigms to have multi-paradigms, like a declarative / imperative hybrid language5.

5 For illustration, see the presentation of the Mozart Programming System [9].

 6

IBM Recommendation 2

[IR2] Provide a simple declarative specification language

We agree with this recommendation. We may add that a graphical notation can be very
expressive and we encourage it in some areas, for instance to express graphically a mapping
between concepts. However, a graphical language may be limited in terms of scalability.

IBM Recommendation 3

[IR3] Use declarative queries only

We agree with this recommendation.

IBM Recommendation 4

[IR4] Provide an abstract syntax for the transformation language

We fully agree with this and we believe this is the key technical recommendation for the QVT
standard. The interest is not only to plug transformations expressed in different language
styles, but mainly to have an open and unified standard, allowing portability, interoperability,
etc. See our recommendation [TR6], in section 4 below.

IBM Recommendation 5

[IR5] Adopt common terminology

The need of this recommendation is obvious to clarify the concepts of QVT. It is the starting
point to have a complete, consistent and unambiguous semantics, see [M1.1], [M1.2], [M4.1],
[M4.2].

IBM Recommendation 6

[IR6] Use the Action Semantics6 as an interchange format

We agree with this recommendation, seen as a response to [IR4]: “Imperative parts of rules
should be exchanged via UML Action Semantics. The UML 2.0 Action Semantics will be
appropriate within the timescale of this RFP. This will provide a standards-based interchange
format for imperative specifications of transformation behavior while permitting the use of

6 UML 2.0 Action Semantics.

 7

particular concrete syntaxes that are appropriate for use in particular development
environments” [8].

IBM Recommendation 7

[IR7] Support symmetric rule definitions

In theory, we agree with this recommendation to avoid redundancy and to have a consistency
between [source / target] and [target / source] mappings. In practice, we are not yet convinced
of its necessity. This need must be evaluated in reference to the high tool development cost it
implies. Moreover, we doubt that it is realistic for an imperative language.

IBM Recommendation 8

[IR8] Support composition and reuse

We are completely in line with the composition capability and this at different scales: 1) to
reduce complexity and for abstraction, 2) to produce and use QVT COTS’s, see [TR3].
Concerning reuse, we encourage the use of the template technique to elicit QVT patterns
(systematic solutions).

IBM Recommendation 9

[IR9] Support complex transformation scenarios

We encourage to have M-to-N mappings, supporting the other mapping types (1-to-1, 1-to-N,
N-to-1). Concerning symmetric mapping, see our response to [IR7].

IBM Recommendation 10

[IR10] Provide complete examples

We do not propose examples in this paper.

IBM Recommendation 11

[IR11] Establish requirements on transformation executions

This point concerns the semantics of execution that has to be explicit, see [M1.1], [M1.2],
[M4.1], [M4.2], and especially for the rule engines. This is essential for the portability of the
QVT rules.

 8

IBM Recommendation 12

[IR12] Emphasize the tooling aspect

We suggest the use of the quality factor perspective for eliciting and classifying the use cases
allowing to define the requirements that a tool should satisfy.

This analysis shows that: 1) IBM and THALES visions on QVT recommendations are
globally aligned, 2) it is necessary to consider user recommendations, going beyond a single
technical perspective.

4. Towards a pivot approach

As seen in the compared Thales and IBM recommendations analysis (see sections 2 and 3),
we consider that IBM recommendation 4 about an abstract syntax for QVT is central and
meets both user and technical expectations about the QVT language. In this section, we
present a candidate approach, called the pivot approach, that implements an architecture of the
language that complies to this technical recommendation, and that insures a high level of
portability, maintainability, usability and functionality quality factors fulfilment.

4.1 A reflective and layered architecture

The next recommendation extends [TR4] (“Have an open and unified QVT standard”) and
[IR4] (“Provide an abstract syntax for the transformation language”) and guarantees [S3.4]
(“Offer the ability to support multiple semantics for multiple communities of QVT actors”).

THALES Recommendation 6

[TR6] Have a reflective and layered approach

The best way to have an open, unified [TR4] and durable standard is to adopt a reflective and
layered architecture. A layered approach has been introduced by QVT-Partners [2] and
OpenQVT [3]. From a bootstrap, the core of QVT, we can construct successive layers of
abstract and concrete syntax. An abstract syntax defines a semantics; a concrete syntax
defines a concrete representation of an abstract syntax. With a reflective approach, an abstract
syntax can be transformed into a concrete syntax and / or in another abstract syntax, a new
layer. In order to have a complete and consistent system of QVT languages, each
transformation, and particularly between two layers, is described by a mapping7.

7 This is an axiomatic approach. In logic, we could say that the bootstrap is a set of axioms; a layer or a concrete
syntax corresponds to a theorem; a mapping corresponds to the rules to create a theorem.

 9

The bootstrap. It contains: 1) the primitive types, 2) the first metamodel where 1.a) the
Query, the View and the Transformation are explained and described, 1.b) the other
fundamental elements, like the packaging, are introduced. The bootstrap contains the core of
QVT but also defines the minimal semantics of QVT. The bootstrap is unknown by the end-
users.

Note: the dilemma declarative / imperative style is reintroduced here; if there are many
possible bootstraps, just one bootstrap shall exist in order to have an unified semantics.

The layers. To have a more concrete presentation of what a layer is, we use the same pattern
as the MDA pattern: the bootstrap defines a common language, the QVT-CL, corresponding
to a PIM; each new layer defines a specific language, the QVT-SL, corresponding to a PSM.
The QVT-CL to QVT-SL transformation is specified by a QVT mapping. This pattern can be
reapplied recursively: a QVT-CL defines a new family of language.

Transformation

QVT Mapping

QVT-Specific
Language

QVT-Common
Language

Figure 1. QVT-Language Pattern

This solution offers a good compromise for the tool developers: if a tool language respects the
semantics of an abstract syntax, this tool language can be transformed into another target
language (and reciprocally). For the users, the comformance to this common semantics is a
guarantee of portability. See [TR1] and [TR2].

THALES Recommendation 7

[TR7] Isolate the access to the model repository

A repository of models, such as a model database, shall be operated through a query / view /
transformation facade API. This layer, that we call the QVT-Repository API, contains all
services required to interact with a model repository. The following figure exemplifies a
reflective layered architecture, including a repository layer.

 10

QVT-Specific LanguageQVT-Specific Language

QVT-Specific Language QVT-Specific Language

QVT-Common Language

QVT-RepostiroryAPI

Figure 2. Layered QVT-Language Approach

4.2 The Pivot technique

In response to [TR6], we propose the pivot technique. The major interest of this approach is to
satisfy the quality factor of portability and particularly to guarantee a semantics of execution,
see [TR1] and [M1.1]. A good example is Java: thanks to its virtual machine, under Windows
or under Unix, the behavior is the same. For our concern, the QVT-CL (the bootstrap)
constitutes the pivot and all other QVT-SL shall be semantically projected on the pivot (a
mapping from the QVT-SL to the QVT-CL guarantees this projection).

Note: to be precise, a chain of semantics mappings from a QVT-SL 1 to a QVT-SL 2 (an
horizontal mapping) is not strictly equivalent to a QVT-SL1 to a QVT-SL2 mapping via the
pivot (this is a vertical mapping, see the note 6).

The architecture we propose is organized in four layers.

The QVT Language layer, also called Metamodel layer. This layer characterizes the
foundational common concepts and semantics that the various QVT languages will have to
map onto. This semantics is organized in two levels: common semantics and advanced
semantics. The purpose of having these two levels is to provide the possibility to compose
transformations with heterogeneous QVT languages.

• The common semantics is what every QVT language shall support. Composition of
transformations shall be expressed with this common semantics as public provided
and required interfaces..

• The advanced semantics is an extended range of semantics that QVT languages may
support to represent private QVT behavior (i.e. not the public interfaces and not in the
semantics of the QVT-CL).

 11

Figure 3. QVT Common Language Infrastructure

We think that at least these two levels of semantics shall be standardized in order to provide
the ability to support multiple languages and allow the interoperability and composability of
QVT specifications.

These two levels of semantics apply mapping rules in order to guaranty the appropriate
correspondence of the QVT-SL semantics with the QVT-CL. Depending on the kind of
semantics the specific language provides, the correspondence may be:

• Inclusion: The specific language has a semantics range that is fully supported by the
common and advanced semantics. This is the case of the QVT Specific Language 2 in
Figure 3.

• Proprietary extensions: Here, the specific language semantics range does not exactly
map onto the common and advanced semantics. For instance, if the QVT-CL supports
only single-inheritance, then a specific QVT-SL multiple-inheritance semantics has to
be adapted onto QVT-CL through mapping. This is the case of the QVT Specific
Language 1 in Figure 3: an additional level of proprietary semantics has been

 12

represented. Note that it will require proprietary extensions into the execution layer of
the overall architecture presented below.

The abstract syntax layer of QVT expression, also called model layer. Every QVT
expression (queries, views and transformations) shall conform to a QVT language, in fact to a
QVT-SL, defined in the previous layer, the QVT Language layer. For each QVT expression,
there is an abstract syntax and a concrete syntax. This layer concerns the abstract syntax of a
QVT expression, in other words its semantics. However, this QVT expression has to be
mapped, with a transformation, in the QVT-CL, the pivot, and respect the common and
advanced semantics. This mapping is a semantic mapping. There is a 2-dimensional mapping:
vertical with the QVT-SL metamodel and horizontal with the QVT-CL abstract syntax,
respectively called “Transformation specification (abstract)” and “Transformation realization
(abstract)” in Figure 3.

The concrete syntax layer of QVT expression, also called instance layer. This layer
contains the QVT expressions in their concrete syntax. For example if the QVT Specific
Language 1 were Objecteering J language then the QVT expression would be the actual J
source code. There is also here a 2-dimensional mapping. However, the “Transformation
realization” is here expressed by two entities: a) one for its public and private parts (both
conform to the common and advanced semantics defined in the metamodel layer and are
likely expressed in terms of bytecode or other intermediary concrete language), and b) one for
the proprietary semantics part of the language specification. The public part allows
composition of the transformation initially expressed with QVT Specific Language 1 with an
other QVT expression expressed, in Figure 3, in QVT Specific Language 2. Moreover, in our
architecture, both entities shall be executable on the virtual machine described in the
execution layer below. In addition, for a reason of consistency, the horizontal mapping of this
layer shall be semantically compliant with horizontal mapping of the previous layer. This very
transformation illustrates the ability of our architecture to be reflexive (i.e. its internal
transformations are also standard, executable, and conform to the architecture itself). Here,
this transformation is expressed solely in terms of the common semantics described in the
QVT Language layer, but this is not mandatory.

Execution. This layer defines how we view a common virtual machine for QVT execution.
The virtual machine shall support and execute both the common and the advanced semantics
(likely expressed in terms of bytecode as defined at the previous layer). The virtual machine
exposes an execution surface that needs to be standardized. To maintain tool-neutrality and
technology-independence of the virtual machine implementation itself, interfaces with model
repositories (for Q and V) as well as interfaces with operating systems, and any required
libraries shall also be standardized. Finally, proprietary semantics has to be supported by an
additional virtual machine (unless this semantics was “down-mapped”, for e.g. through
compilation, to the common and advanced semantics – indeed, the specific language compiler
can do this semantics adaptation, with information loss, though). Means of integration
between both virtual machines shall also be standard if we want to maintain full portability. In
this case, it is possible to deliver a proprietary virtual machine that installs along the standard
one to support parts of the execution of a transformation specification expressed in a specific
language that has some proprietary semantics.

 13

We think that this architecture responds to the requirements of multiple communities (support
for multiple languages, see [S3.4] and [TR4]), transformation composition (common
semantics supported by all specific languages, see [TR3]), tool-neutrality (portable virtual
machine, see [TR1]). However such an architecture remains large and complex to standardize.
A similar architecture has already been standardized however, which means that this is
feasible. This is the Common Language Infrastructure which is very similar but has a larger
scope, not targeted to model transformation. It was standardized at ECMA (and now at ISO)
by Microsoft, HP, and Intel [7], along with C#, one concrete language that fits perfectly with
the semantics executed by the virtual machine.

In our case however, the core semantics shall target query, view and model transformation. In
particular, it shall abstract model repository access [TR7]. The question now arises of what
coverage has to be addressed by the common and advanced semantics defined in the
metamodel layer? Likely an imperative semantics because it is easier to map declarative
language onto imperative ones than the opposite. UML Action Specification Language could
be a one candidate for such an imperative semantics.

5. Conclusion

This paper stresses the necessity to formulate a set of user recommendations. Have clearly
emerged the portability and durability needs, required to maintain an industrial model
engineering tool chain and to maintain, better to improve, the ROI of software production.
Another user recommendation has been formulated to have an open and unified QVT
standard to support all needs of query, view and transformation for the model engineering and
to support different semantics for multiple communities of QVT actors. We globally agree
with the IBM recommendations, as a set of technical recommendations for the final standard.
For us, the central point is to have an abstract syntax to formulate QVT expressions
(recommendation 4). Considering a reflective and layered architecture for an open and unified
QVT standard, we have introduced the pivot technique guaranteeing a semantics of execution.
Taking into account this proposal, the QVT standard may precise this semantics and the
architecture associated. We strongly believe that it is the most consensual approach for an
agreement among tool developers for satisfying the user communities.

Acknowledgment

We would like to thank the members of the MOTOR project, Jean Bézivin, Jean-Marc
Jézéquel, Didier Vojtisek, Daniel Exertier, Madeleine Faugère and Hubert Dubois; Serge
Salicki, the MIRROR pilot program manager and Laurent Rioux, leader representative at
OMG for MIRROR project.

The MOTOR Project is a project of the CARROLL research program, launched by THALES
and two French public research laboratories: CEA (Commissariat à l’Energie Atomique) and
INRIA (Institut National de Recherche en Informatique et en Automatique). The joint
program aims at developing software engineering and middleware technologies. Over the
coming years, the goal of CARROLL is to spearhead research that is focused on pinpointing
increasingly competitive software developments for large-scale and embedded systems, the
likes of which are vital in today’s ever more demanding and complex software environment.

 14

The results will thus be of valuable worth not only to THALES, but also to software editors and
other industry players. More information on CARROLL can be found at www.carroll-
research.org.

References

[1] OMG/RFP/QVT. MOF 2.0, Query / Views / Transformation RFP. OMG Document

ad/2002-04-10, October 2002.
[2] OMG / MOF 2.0, Query / Views / Transformation ad/2002-04-10, Initial Submission,

Version 1.0 2003/03/03, QVT-Partners.
[3] OMG / MOF 2.0, Query / Views / Transformation ad/2002-04-10, Initial Submission,

Version 1.0, 2003/03/03, OpenQVT.
[4] OMG / SPEM. Software Process Engineering Process Metamodel (SPEM). OMG

Document ad/formal/02-11-14, version 1.0, November 2002.

 [5] ISO/IEC TR 9126 (1991). International Organization for Standardization, Geneva. An

international standard for quality factors.
[6] IEEE Guide to software requirements specifications. ANSI / IEEE Std. 830-1993 or 1998.
[7] ECMA and ISO/IEC C# and Common Language Infrastructure Standards:

- ECMA (December 2001): 1st edition of the C# and CLI standards as ECMA-334 and
ECMA-335, respectively. More information: http://www.ecma-
international.org/activities/Languages/ECMA CLI Presentation.ppt

- ISO (April 2003): ISO/IEC 23270 (C#), ISO/IEC 23271 (CLI)
[8] Tracy Gardner, Catherine Griffin, Jana Koehler, Rainer Hauser. A review of OMG MOF

2.0 Query / Views / Transformations Submissions and Recommendations towards the
final Standard, July 21, 2003.

[9] Mozart-Oz, The Mozart Programming System. http://www.mozart-oz.org/

 15

http://www.ecma-international.org/activities/Languages/ECMA CLI Presentation.ppt
http://www.ecma-international.org/activities/Languages/ECMA CLI Presentation.ppt
http://www.mozart-oz.org/

