CoSMIC: An MDA Tool Suite for Application Deployment
and Configuration

Tao Lu, Emre Turkay, Aniruddha Gokhale *, Douglas Schmidt
Institute for Software Integrated Systems
Vanderbilt University, Nashville TN
*Contact Author: a.gokhale@vanderbilt.edu

1. Overview

The Component Synthesis using Model Integrated Computing (CoSMIC) [1] isthe
Object Management Group (OMG)’sModel Driven Architecture (MDA)[2] standards-
based tool suitetargeted primarily for distributed real-time and embedded (DRE)
component-based applications.

The OMG’ s Deployment and Configuration (D& C) Specification [3], which was recently
adopted, describes the mechanisms by which distributed component-based applications
are configured and deployed. This paper describes how our CoSMIC MDA tool suite has
been tailored to address the requirements of the D& C specification.

The D& C specification outlines the following steps in the deployment process:

1. Packaging —which involves bundling a suite of software binary modulesand
metadata representing application components, where a component can be monolithic
(standalone) or an assembly of subcomponents

2. Installation —which provides populating a repository with the packages required by
the application

3. Configuration —which includes configuring the packages with the appropriate
parameters to satisfy the functional and systemic requirements of application without
constraining to any physical resources

4. Planning —which comprises making appropriate deployment decisions, such as
identifying the entities, such as CPUs, of the target environment where the packages
will be deployed

5. Preparation — which involves moving the binaries to the identified entities of the
target environment

6. Launching —which involves triggering the installed binaries and bringing the
application to aready state

The CoSMIC MDA tool suite has to date addressed the packaging and configuration
aspects of the deployment process outlined above. These aspects are described in detail
below.

2. CoSMIC’s Component Assembly and Deployment
Modeling Language

Applications based on component middleware are composed from instantiation of
different component types, which are partitioned, assembled and then deployed. For
applications, particularly in the DRE domain, the MDA tool must ensure that the
composition strategies provide optimum resource utilization and deliver the required
quality of service (QoS) guarantees to the application.

The Component Assembly & Deployment Modeling Language (CADML) is developed
as part of the CoSMIC MDA tool suite targeting the assembly and deployment aspect of
the DRE application deployment process.

The CADML, based on the meta- model illustrated in Figure 1, is avisua language tool
developed using the Generic Modeling Environment (GME) framework [4]. Visual
Ianguag& developed using GME benefit from the following features:
GUI interface supporting al general GUI application features with very generic
semantic mapping.
Library importing and exporting capability.
Type system defined in the meta- model, which supports inheritance ard
instantiation. This introduces object-oriented design (OOD) in the modeling
paradigm.
Formalized constraints specified in the meta- model to validate the model.
Plug-in of analysis and synthesis tools that interpret the models

The current release of CoSMIC’'s CADML tool supports the OMG CORBA [5]
Component Model (CCM)[6] standard and works out of the box with the Component
Integrated ACE ORB (CIAO)[7], which is a rea-time CCM implementation we are
developing.

The CADML modeling paradigm allows CIAO-based DRE application developers to
model the component assembly comprising the connections between different
components of the applications.

The CADML interpreter synthesizes component assembly metadata as XML descriptors
that are used by the middleware deployment tools. Different descriptor files represent
different application scenarios. With the support of general component repository, an
application developer could build up different application scenarios by only providing the
specific descriptors.

,n—'—’ Assembly_Descriptor Interaction_Falder

==Model==

: : ==Folder=»
Host_Location_Association | .
e=Connection== H —=| Assermbly_Description : field [*

T ¥
M
= . Facet
Hast_Location : <=RefarenceProgys= gﬂx or
<= Nodel== 4at| COMponent_Type - :
E 51| “=ModelProxys> 2 Facet Receptacle_Connection
Hostlocation_Description: field 0 dst A — N ==Connection==
Destination ; field 57| Destination - field Receptacle
r <<Referencer o - |
0.: 7 :

Process_Location
Py . Node_To_Be_Registered
= . ==FC0==

Destination : field [°-"

: 0=
____________________ . = 0.%
Registration_Association
. i A ==Connection==
Procese_Location_Association
<<Connection==

Registration_Method : enum

Registration_Point
==flom==

Registration_Description : field

Figurel: CADML Visual Paradigm

Fi
gure 2 illustrates an example avionics assembly modeled using the CADML visual
modeling paradigm. This example illustrates a trivial application comprising a timer

driven global positioning (GPS) component that drives the aircraft’ s airframe and pilot’s
navigation display.

= = = = =i P = J =
1 Prov Prov 1 1 Prov Prove ¢ = Cann {2 (rProw Connlr'—J

1 Prone

WCons Push |- WCons Push | i— —|—+'Cons Push |- W Cons

Timer GPS AirFrame MNavDisplay

Figure2: Modeling an Avionics Application Assembly

3. CoSMIC’s Options Configuration Modeling Language

Most applications today increasingly are built using commercial off-the-shelf (COTS)
middieware. These COTS middleware must be customized to suit the application’s
functiona and non-functional requirements. This customization can be achieved by
enabling a combination of middleware configuration options chosen carefully from
among a large set of such tunable options provided by the middleware. Each option
addresses different performance aspects of applications. As aresult some options are
mutually dependent while certain combinations of options often conflict with each other.
The task of choosing the right set of compatible options thus cannot be done in an ad hoc
way but instead must be done by atool.

CoSMIC'’s Options Configuration Modeling Language (OCML) is another visual
modeling paradigm developed using the GME framework to address the configuration
aspect of the deployment process. It provides alanguage to define the constraints and
dependencies of the options that can then be used to customize the middleware for DRE
applicatiors.

Error! Reference source not found. illustratesthe OCML MDA development process.
In its current form, OCML supports option configurationand validation for the TAO real-
time CORBA ORB [8], which is used as the ORB layer for the CIAO CCM
implementation.

Meta-meta-model

OCML
: used to definerules

—

Meta-model

Defines

Domain specific rule set
: definestheruleset for TAO

—

Modd

The OCML paradigm has been developed for middlewar e developers who can use it to model the

@uﬁ

Application specific rule set
M odel and validator
. generates and validatesthe

configuration file

Figure3: MDA Developing Processin OCML

dependency and compatibility rules between various options.

Figure 4 illustrates an example of an options compatibility and dependency rule modeled
by a TAO ORB developer. Thisrule showcases an AND expression used to model a
dependency of an option on more than one option simultaneously

& Lnum

& Fnum
dyn

I iEs
14

& Lnum

04
14

CRBAlowReactivationOf=Systemyds ORBActveHintsinld

L
————d
and_expr
EEY
lire: &
acti &

CREBaystemidPolicyDemuxStrategy

Figure4: OCML Configuration Rulefor TAO ORB

The OCML meta- model is used with two different purposes. One purpose serves the
validation of pre configured options, while other allows interactive option file
construction

A validator checks an application-supplied TAO ORB configuration file against the
OCML modeled rulesfor TAO ORB. If arule check fails, the application developer is
informed. Alternately, an application developer can choose to use agraphical user
interface tool that accompanies the OCML paradigm. This framework provides an
interactive environment to application developers to build a set of compatible options.
This interactive tool consults the rules modeled by the middleware developer thereby
constraining the choice of options to a valid, compatible set.

A sample TAO ORB optiors configuration file in XML is shown below:

<?xm version="1.0"?>

<l-- Converted from./performance-tests/Latency/DIl/svc.conf by
svcconf-convert.pl -->
<ACE_Svc_Conf >

<l-- -->

<l-- -->

<static id="Advanced_Resource_Factory" parans="-ORBresources gl obal -
ORBReact or MaskSi gnal s 0 - ORBI nput CDRAI | ocat or nul | - ORBReact or Type
sel ect _st - ORBConnectionCacheLock null"/>

<static id="Server_Strategy_ Factory" parans="- ORBPOALock null -
ORBAI | owReacti vati onOf System ds 0 - ORBActiveHi ntsinlds 1"/>

<static id="Client_Strategy Factory" params="-ORBProfileLock null -
ORBCl i ent Connect i onHandl er RW />
<static id="Resource_Factory" parans="-ORBConnecti onPurgi ngStrategy
nul | - ORBConnecti onCacheMax 1024"/ >
</ ACE_Svc_Conf >

An XML file of thiskind can be built using the interactive tool or a pre configured file
can validated using the rules engine provided by OCML.

& Integer
& Lrnum e ™
I !fu-&
:L::: DREConnectionCachehax
ORBConnectionPurgingStrategy 2 Integer

OREConnectionCachePurgePercentage

Figure5: TAO ORB Options

The OCML models for middleware options are trandated into XML by OCML
interpreters. The synthesized XML for Figure 4 and Figure 5 are shown below:

<RULE nane="ActiveHi nts_Rul e">
<| MPLI ES>
<VALUE cat egory="Server_Strategy_Factory"
opti on="ORBAl | owReact i vati onOf Syst em ds" >
0
</ VALUE>
<NOT>
<SELECT cat egory="Server _Strategy_Factory"
opti on="ORBActi veH ntslnlds"/>
</ NOT>
</ | MPLI ES>
</ RULE>

<RULE nane="NoConnecti onPur gi ng_Rul e" cat egory="Resource_Factory">
<AND>
<| MPLI ES>
<VALUE option="ORBConnecti onPurgi ngStrategy">
nul |
</ VALUE>
<AND>
<NOT>
<SELECT opti on="ORBConnecti onCacheMax" />
</ NOT>
<NOT>
<SELECT opti on="ORBConnecti onCachePur gePer cent age"/ >
</ NOT>
</ AND>
</ | MPLI ES>
</ AND>
</ RULE>

4. Work in progress

The CoSMIC tool suiteis currently being augmented to address the planning aspect of
the deployment process. In particular, we are devel oping suitable paradigms for
expressing the QoS requirements of DRE applications. Analyzing the QoS requirements
will provide the basis for making the planning decisions, such as identifying the entities
in the target environment where different parts of the application will be deployed. These
QoS requirements will also drive some of the assembly and configuration aspects thereby
interworking with the CADML and OCML tools. Moreover, OCML hasto be refined to
capture option configurations at four distinct layers within the CCM. For example,
configuration of a middleware, such as CIAO CCM, involves configuring parameters at
severa layers including the ORB, the component server, the containers, and the
components. Some of the configuration decisions at al these layers will need lazy

evaluation at planning time when the QoS requirements are analyzed in the context of the
target environment.

5. References

[1]

(2]

(3]

[4]

5]

(6]

(8]

Aniruddha S. Gokhale, Douglas C. Schmidt, Tao Lu, Balachandran Natarajan, Nanbor
Wang: CoSMIC: An MDA Generative Tool for Distributed Real-time and Embedded
Applications. Middleware Workshops 2003: 300-306

Object Management Group: Model Driven Architecture(MDA)Document number
ormsc/2001-07-01 Architecture Board ORMSC1July 9, 2001

Object Management Group: Deployment and Configuration of Component-based
Distributed Applications, An Adopted Specification of the Object Management Group,
Inc.June 2003 Draft Adopted Specification ptc/July 2002

Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G.,
Sprinkle J., Volgyesi P.: The Generic Modeling Environment, Workshop on Intelligent
Signal Processing, accepted, Budapest, Hungary, May 17, 2001.

Object Management Group, The Common Object Request Broker: Architecture and
Specification, 2.6 edition, Dec. 2001.

BEA Systems, et al., CORBA Component Model Joint Revised Submission, Object
Management Group, OMG Document orbos/99-07-01 edition, July 1999.

Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale,Christopher D. Gill,
Balachandran Natarajan, Craig Rodrigues, Joseph P. Loyall, and Richard E. Schantz,
“Total Quality of Service Provisioning in Middleware and Applications,” Elsevier Journal of
Microprocessors and Microsystems, vol. 26, no. 9-10, Jan 2003.

Douglas C. Schmidt, Aniruddha Gokhale, Balachandran Natarajan, et al, “ TAO: A
Pattern-Oriented Object Request Broker for Distributed Real-time and Embedded
Systems,” IEEE Distributed Systems Online, Feb 2002.

