From the Workfloor: Developing Workflow for the
Generative Model Transformer

Ghica van Emde Boas
Bronstee.com
the Netherlands
emdeboas@bronstee.com

ABSTRACT

This document describes an experiment with the purpose of
developing a proof-of-concept for a prototype for a workflow
component for GMT, the Generative Model Transformer Open
Source effort. It discusses the challenges we met in trying to
adhere to standards and the problems of using existing
“wizards”. Despite this, generative development proved to be
effective.

Keywords
Generative techniques, Java, UML, XML, XMI, Model-
Driven Application development, Workflow.

1. INTRODUCTION

Model Driven Architecture (MDA) is an initiative by the
OMG to leverage UML-based modeling techniques. The
idea is, that we should be able to define domain specific
models and platform specific models separately. By using
model-driven generative techniques, or by using
executable models, applications will be built.

It is surprising that the word “Architecture” is nowhere
explained in the MDA literature. It is unlikely that the
term refers to application architecture: presumably this
architecture does not depend on the fact whether the
application was developed using MDA. Maybe an
architecture that is model driven hints to an attempt to
define the architecture of the development process itself,
or of the tools that are an essential part of MDA.

The developer using an MDA development process will
construct, or reuse, a set of models. By a series of
transformations applied to these models, a deployable,
executable model will be produced or code in a traditional
programming language will be generated. The
architecture of this development process, and the tools
that implement it, s of major concern to the MDA
community. How can we define an MDA-component and
how will these components fit together to define the A of
MDA?

Several tool vendors have started to bring MDA tools to
the market. These tools mostly look like a next-generation
CASE tool: monolithic and closed world. Although they

Developing Workflow for GMT

Page 1 of 7

may be excellent tools, the question is, whether there are
other possibilities.

1.1 The Generative Model Transformer

At past year’s OOPSLA, a BOF session organized by the
author and Jorn Bettin discussed the necessity of tools for
the MDA development process. This resulted in an open
source initiative that is now part of www.eclipse.org (see
ref. [1]).

The goal of the Generative Model Transformer (GMT)
tool project is to construct/assemble a set of tools for
model-driven software development with fully
customizable Platform Independent Models, Platform
Description Models, and Refinement Transformations.

GMT's initial requirements document states the following:
At this stage we envisage four main components:

1. A mapping component that can combine two XMI-
encoded models into one new XMI-encoded model.

2. A model transformation component using XMI as
input and output.

3. A text generation component, using XMI as input
and text (code) as output.

4. A workflow component that provides the required
glue between the three functional components above,
any additional user-developed MDA tool
components, and popular IDEs/tool platforms such
as Eclipse.

Any component that fulfills the basic requirement of
allowing XMI input should be usable as a MDA tool
component in GMT.

The requirements document is still under discussion, as is
the place of workflow within these requirements. The
following description of workflow and how it is intended
to be used should be considered as the authors
contribution to this debate.

Note that the role of the models themselves is merely data,
as their encoding in XMI already suggests.

Theoretically, the mapping- and text generation
components are a particular form of model transformation
component. Practically, we distinguish between them.

Text, or code generators can be found already. The GMT
team hopes to reuse one instead of developing a new
component. Model transformators will be the next
components to appear. Our hope for GMT is that UMLX
[13] will fullfil this role within the tool, and maybe others
later. The shape of a mapping component is still to be
defined.

The workflow component is an entirely different kind of
component. It is there to allow the transformations to
execute in the right order, with the right input, under the
right conditions. The scope of this paper is a discussion of
this workflow component.

2. THE WORKFLOW COMPONENT

Let’s start with answering the question what workflow is,
and why it is important for GMT.

2.1 What is Workflow?

The Workflow Management Coalition [5] defines
workflow as:

“The computerized facilitation or automation of a
business process, in whole or part.”

Workflow Management Systems are already popular for
many years within banking and insurance.

A characteristic of an environment that can benefit from
workflow, is the presence of many different tasks and
activities, where information must be passed between
these according to a predefined set of rules.

2.2 Workflow within GMT

The workflow within GMT is intended to help two
different sets of users of GMT as a tool:

1. The developer of an MDA component that should
participate in the GMT tool set.

2. The developer of an Application using the GMT as a
tool.

Disregarding the developer of MDA components for the
time being, let us assume that the GMT has an extensive
set of components that can do model transformations and
code generation. The application developer who wishes to
use model-driven, generative techniques, would choose a
modeling tool, a series of transformation components and
one or more generation components.

The choice of particular components and order in which
the developer applies the use of each of these components
determine the shape of the resulting application, but not
its domain contents. If this developer want to re-iterate his
development process, because he want to change or
extend his application, or because he wants to develop
another application for a similar platform, then he

Developing Workflow for GMT Page 2 of 7

probably wants to use the same workflow, using the same
MDA components.

Figure 1 below, is taken from the GMT requirements
specification [2]. The dark ovals are models, the arrows
show transformations. @~ The sequence of the
transformations, and the choice of models, define the
development process that the developer of MDA
applications wants to follow. It is outside the scope of this
paper to discuss this picture in more detail.

Meta Modelfor WModel o JZ2EE "patterrs” o
Sl insurance product s pecifications JZEE foxfures I
° et bkl o
Model of X7Z “patters” of

Model of concrete
X¥Z fextures

insurance products, free fram
ikt hodel
Fepact: egacy ntegeation

Transtoretion n

Should
probably be called
2 PSM, becaus e at this point
implementation platform
concepts have been
waven in

Intermedize
hiodel 1

Ikt hlocel

implem entation cancerms
with system 2

Texture
Wapping
Transtorraton 1 Other aspects could be specific
Transhrmation m pets tence, tole bas ed access
<antrol, logging, deployment.

Infact, instead of one large JZEE
PD M, several smaller aspectual
models may be more appropriate

Target Platonm
Source Code

Fig. 1. Informal MDA development flow in GMT

Looking at the process description of GMT, we see that
the workflow definition applies precisely to the way we
envisage that GMT should be used by application
developers.

Let’s describe an example that can be done already now
with what is available for the GMT tool-set.

Our application developer would like to develop yet
another version of our famous AddressBook application in
a model-driven, generative way. The resulting application
should have a simple Java-Swing GUI, and the contents of
the addressbook should be saved in a relational database.

Using our experimental, prototypical, GMT workflow
implementation, the intention is that the developer can
define a workflow that looks roughly as follows:

1. Start the GME tool and define a domain-analysis
class model in UML. Export the resulting model as
XMI file.

2. Use a UMLX transformation to transform the model
to a relational model .

3. Use the FUUT-je tool and a database access code
generation template to generate JDBC code and table
definitions.

4. Use a UMLX transformation to transform the model
to a Swing model .

5. Use the FUUT-je tool and a Swing code generation
template to generate Java code.

6. Import all code into Eclipse to make final
modifications and add manual code where needed.

7. Build the application using ANT.

The GMT workflow component will orchestrate the
cooperation between components that can participate in
GMT. These components may be applications that were
not designed for cooperation within GMT. The workflow
component will make it possible that these components
are capable of cooperating effectively and in a loosely
coupled way.

By having such a workflow component available, we think
that GMT can have a head-start: GMT will be able to
utilize quickly other functionality that is already there.

For this reason it is the workflow component that ended
on top of the priority list of things to develop [2], although
workflow does not seem to be a core subject domain for
GMT.

Because the workflow component is intended to be a core
part of GMT, there are these major requirements:

» The resulting workflow component must be open-
source and fit within the Eclipse project [3].

» Adhere to standards where possible

» Use model driven— generative methods for
development where possible.

» Develop a simple first version rapidly, that can
bootstrap further GMT development as quickly as
possible.

2.3 Choosing the Software to Use for
Generative Development

We are trapped in a recursive argument here. GMT would
be an ideal tool to help develop the workflow component.
However, GMT is misses essential function if we do not
have a suitable workflow component. The question is,
how we best can develop GMT before GMT is ready.

For now, we will have to do with a piece of “good
enough” software: FUUT-je!. This is a fairly simple, but
effective model driven code generation tool, that was
donated to the GMT project by the author of this paper.

Of course we looked around to see whether we could find
an open-source, Java, workflow component. Actually, we
found one: “Open for Business” (OFBiz) [4].

An alternative would have been to use EMF, the Eclipse
Modeling Facility. For now, EMF seems less suitable, because
we cannot change it’s meta-model and because it seems hard
to write your own customized code generation.

Developing Workflow for GMT Page 3 of 7

We do not have a good excuse for not using it. For the
time being, I consider OFBiz to be too large and too
ambitious for our limited purpose. We may later
interoperate with it, because OFBiz uses the same process
definition language called XPDL.

2.4 The WfMC Standards

We did find a set of standards that we would like to
comply with: the Workflow Management Coalition
Workflow Standard [5].

Trying to develop software that complies with a
comprehensive standard as defined by the WfMC brings
another dilemma: how do we avoid scope creep? If we
implement the full WfMC standard, our final workflow
product would have much wider applicability than just
GMT and it could become such a time consuming activity
that the development of other GMT components would
suffer.

No easy solutions exist for software development
challenges. The other side of the coin of using a
comprehensive standard is that it is mature. For example,
the WIMC has a well-defined workflow process definition
language, for which an XML Schema is available. See
“XML Process Definition Language” (XPDL) [6].
Because it should be straightforward to interpret an XML
Schema, we decided to use it as a starting point.

2.5 Architecture for the GMT Workflow
Component

A workflow service that adheres to the WfMC standard
will consist of two parts: First the user will define the
workflow processes, the activities in each process and the
conditions the should be met for the activities to be
started.

When the workflow definition is available, an Enactment
Service will make sure that the activities are executed in
the right order under the right conditions. It follows that
our development comprises two distinct tasks:

1. An editor for the workflow definition
2. An Enactment Service

Initially, we will support only a subset of the XPDL and
write only a simplistic enactment service.

Fuut-je

(O—— GME

Eclipse

Fig. 2. Sample Workflow Definition

The simple workflow that we should be able to execute in
the first demo of our prototype looks as in fig. 2.

The next sections will describe the development of the
XPDL Editor and the Workflow Enactment Service.

3. XPDL EDITOR

The messages sent between activities participating in the
workflow will be in a format that is defined by the XPDL
Schema. Therefore our XPDL editor should be able to
read and write XML messages in this format.

Preferably it should have a front-end that will show and
interact with pictures like in fig. 2. A crude first
implementation could be to just use notepad or a generic
XML editing tool. Since the Enactment Service should be
able to read the definition also, we chose to develop
slightly more usable software, that would be able to read
an XPDL message into a suitable Java object structure,
and have simple Java Swing entry-forms as a front-end
that could be replaced by a fancy one later.

Activities: org.edlipse.gmt.whapdl.ActivitiesData@1 91801 ﬂ
{ ctivity |
~Activity - Takl

id riarme description lirnit perfo...| prioty | icon | docu...

002 ituutie run the FUUT-je toal FUUT-je Doven
003 ogrne run the GME tool GME
004 eclipze run the Eclipse IDE Eclipze

Add | Edit | Remove | Sort |

Ok | Cancel | Help |

Fig. 3 — Simple Java Swing XPDL data entry form

Our best hope for a standardized way of binding XML
schemas to Java representations would be to use JAXB,
the Java™ Architecture for XML Binding [8]. Sun has a
binding compiler wizard available that, with some work,
produces a bag full of Java classes that can be used to
marshal and un-marshal the content of a workflow
definition specified in XPDL into and from a tree
structure of Java objects.

To be able to do model-driven development, we should
somehow surface the model behind the XML-schema.

3.1 XPDL, it’s XML Schema and XMI

An XML Schema is a description of an XML data
structure that can be very detailed. The XPDL schema is
the definition of the XPDL language structure.

Various approaches exist to bind XML that is defined by
an XML Schema to a set of Java objects. One of the better
known approaches is JAXB, developed by Sun. Not every

Developing Workflow for GMT Page 4 of 7

XML Schema can be transformed to a set of Java classes,
notably those that describe books will not be suitable.

If we have a set of Java classes, we could abstract these to
a set of UML model classes. This means that we should be
able to express the XPDL language as a UML meta-model
and serialize it as XMI.

& -
~XMI UML#y

XML-Schema Java

C

Ny

Fig. 4. Flow of data for transforming XML-Schema

On the other hand, it should be possible to transform
XML-schema to XMI directly using XSLT, and then use
one of the UML tools to obtain UML. Once we have
UML, we can use code generation templates to generate
Java classes to interface with the JAXB produced classes.

The flow of transformation needed for our development
is shown in fig. 4. Since JAXB is rapidly being adopted as
a standard for XML Schema binding to Java classes, using
a standard JAXB compiler and XML Schema -> XMI ->
UML -> Java, should be our objective.

For practical purposes, because we wanted to have a stake
in the ground for the GMT workflow as soon as possible,
I have taken another approach. There were two reasons:

1. Icould not find a tool or XSLT script to transform the
XPDL schema to suitable XMI close to JAXB
bindings.

2. It was unclear to me how to develop the piece of code
that should connect the Java objects as generated by
the JAXB wizard with the classes that would come
out of a Platform Specific Model (PSM) in UML.

And of course the author is very familiar with the Fuut-je
tool ©. As a result we have decided to use this tool.

Fuut-je has built-in XML facilities, with a very similar
purpose as JAXB: easy generation of Java code that can
read and write XML files of a particular structure. Fuut-je
is certainly not JAXB compliant (it was developed before
JAXB became known). It can however generate code that
can read XPDL into a suitable Java structure, and write
out an XPDL file again. The Java Swing GUI for the
XPDL object structure would come for free.

One problem: Fuut-je did not support XML Schemas. If...
we would have a DTD as the XPDL definition we could
use that instead.

3.2 Developing XML-Schema Support
within Fuut-je

As described, XPDL is defined in an XML Schema.
Therefore it could be worthwhile to look at providing
support for XML Schema’s within Fuut-je.

The first option I looked at was the possibility of parsing
schema’s. The newer Xerces XML parsers have this
possibility. After looking at this for a while, I considered
it to be too complex for my purpose.

A bit more research, and the insight that an XML-schema
is an XML document that is defined by a schema, where
this schema has a ... DTD, led me to a stepwise approach.

Maybe a little more explanation is appropriate. A DTD is
a simpler and a less expressive definition of an XML
structure. Just like JAXB can bind an XML Schema to a
set of Java classes, a DTD can be bound to a set of Java
classes. The abstraction of this set of classes into a UML
model is what Fuut-je can produce by reading a DTD.

From this Fuut-je model, the tool can generate Java code
that can read and write XML that complies with the DTD.
A simple Swing editor used to create the XML content
data is also generated.

Once the DTD of the XML schema of schema’s was read
into Fuut-je, we could generate code to read and write
XML schema documents into a suitable Java object
structure. Remember that XML Schema’s look like XML.
So does the schema of XML Schema’s

X — T Y "
A

__.47-",'-

ol

Fig. 5. Part of the XML Schema model

As you can see in fig. 5, the schema model is very ugly. It
was not necessary however, to do any editing of the
model, therefore the is no need to present a nice picture of
it.

Using the generated classes describing the schema of
schema’s we could write some code that would transform

Developing Workflow for GMT Page 5 of 7

a schema into a Fuut-je model, similar to the bindings of
JAXB.

It was now easy and quick to create the XPDL editor
using the new schema support of Fuut-je. The model
obtained after reading the schema for XML looks rather
ugly too, it contains some 65 classes. Here is a part of it:

Activities

BasicType

A

—
DeclaredType

Fig. 6. Part of XPDL Model

We made no attempt to make a nicer layout, or to edit the
XPDL model in any way. It is clear that the model could
be simplified from a Java or XML perspective. However,
we cannot touch the shape of the model. Otherwise it
would loose compliance with XPDL as defined by the
WIMC.

The binding of a schema to Java classes in Fuut-je is not
nearly as comprehensive as what JAXB provides. It is
adequate for our purpose though and in addition it
provides us with a model from which we can generate
other code besides XML marshalling classes.

The processing of Schema’s by Fuut-je is not very
comprehensive yet, but it can read the XPDL and similar
fairly simple schema’s

In the future we can improve on it, even make it JAXB
compliant, and our work on generating GUI code etc.
would not be lost.

4. WORKFLOW ENACTMENT SERVICE

The workflow enactment service, or workflow engine,
has as responsibility to interpret the XPDL process
definition and to orchestrate the starting and stopping of
workflow activities accordingly.

Considerable discussion went into the question whether
the engine should be the provider of events, where the
activities are actively deciding how to react, or, whether
the engine decides looking at the state of activities which
activities can be started. A major consideration is, that
applications should be totally unaware that they are being
controlled by a workflow engine.

=10 x|

WorkFlow Enackmen

Start varkflow

Exit

Fig. 7. Starting the Enactment Service

The currently implemented architecture provides for a
control structure for processes and the activities contained
within each process. This structure consists of a shadow
object for each process or activity definition object. Each
shadow object maintains the state of the definition object
it controls. The corresponding Fuut-je model is very
simple:

WorkFlowEnactment 4 0.* ProcessControl 4 ——0..» ActivityControl

readButton WiPracess activity
startButton processld activityld
xpdiDef state state

package — completionButton
semice ad

ditButton desoription

state

Fig. 8. Model for the Workflow Enactment Service

In this architecture, the workflow engine can be viewed as
a state transition machine.

When the state of a shadow object changes, this causes a
propertyChangeEvent to be fired. Fuut-je has built-in
support for this. Processes will subscribe to the state
change of activities, and the enactment service subscribes
to the state change of its processes.

The action taken by a process or the service when it is
notified of a state change, is to traverse the structure of its
contained processes and activities to see whether any
activity or process can be started, depending on the
transitions defined.

For example, looking back at fig. 2, you will see that
Fuut-je and Eclipse will simultaneously start, when GME
is finished. The process and in this case the total
workflow, will finish only when both Fuut-je and Eclipse
are terminated.

The next step, activity activation, is described in the
following section.

Developing Workflow for GMT Page 6 of 7

5. ACTIVITY ACTIVATION

At the time of writing of this document, activity activation
is implemented in a simple way. For each activity a new
thread is started and upon the completion of the thread,
the activity is set to completed.

Once the enactment service has determined that an activity
can be started, the application that implements the activity
should be invoked. It is probable that for most
applications that could participate in the GMT workflow a
small wrapper should be developed, to present the
application with input in the proper format. We cannot
expect that all applications will be able to read their input
and write the output in XMI form. Neither can we expect
that these applications will understand XPDL. We assume
that this can be implemented without problems.

Another aspect is that the enactment service should
monitor the execution of the application, and be notified
when the application terminates. The execution of an
application that is the implementation of a workflow
activity should be decoupled completely from the
enactment service itself.

One solution would be to implement the workflow
activities as web-services using SOAP. This would have
the large advantage that the applications could run at any
location as long as it can be reached via HTTP, where the
enactment service acts as a client. This opens the exiting
possibility of cooperating distributed applications within
GMT.

The enactment service could poll an activated application
at regular intervals to find out whether it is still running
and in this way the enactment service could synchronize
the workflow as required by the XPDL definition.

The disadvantage is undoubtedly that this implementation
leads to further scope-creep. There is some very good
open-source software available that may help us to make
this task easier, for example Apache Axis [9], a popular,
open source, SOAP toolbox.

With this development we produced a workflow
enactment service that provides simple workflow. There is
no support for conditional execution of activities, for sub-
processes, or for a database of MDA component
definitions. The workflow as defined now is of limited
practical use. It helps to show the efficiency of our
development method and the validity of the activity
scheduler implemented.

6. OTHER CHOICES

It could be argued that the choices we have made for
implementing the “MDA component glue” are not the
best, and not obvious from an MDA perspective.

Why did we not use UML activity diagrams instead of
workflow? Why did we not wait for a new transformation
tool? Why did we not use the reusable asset specification
[10], instead of XPDL?

Partly this may be ignorance of the author, partly this is
due to our business background, where familiarity with
certain tools leads to quicker results.

We could discuss what the differences are between UML
activities and workflow activities. Or the essential
similarities between XML Schema and XMI. This should
not distract us from making progress with implementing
GMT.

7. CONCLUSION

The experience of developing a workflow component for
GMT shows that it is indeed a high priority for developing
GMT itself to have this component in place. We missed it
to orchestrate our own activities.

Surprisingly little manual code was needed to implement
the workflow engine, and none at all was done for the
XPDL editor. More code may be required to implement
the activity activation. We hope that new generation
templates for web-service support can ease the effort.

To do it right, and to adhere to standards, we need to
accept a wider scope for the workflow component. As a
consequence, this will make GMT interesting to a wider
public, that is not necessarily interested in MDA, but
instead in running distributed application development (or
applications in general) in a workflow environment. We
should avoid to develop a full-function workflow engine
however.

With the growing use of web-services where XML
schema’s play an important role, a potentially very
promising opportunity for model driven development can
be found by providing tools within GMT for transforming
XML Schema’s into XMI and for interfacing with JAXB.

As a by-product of the workflow component effort,
FUUT-je can now read XML schema’s and interpret them
as FUUT-je models.

Developing Workflow for GMT Page 7 of 7

8. ACKNOWLEDGEMENTS

Many thanks to the workshop-paper referees, who have
sent me extensive and constructive reviews. In trying to
incorporate their suggestions, the paper has become quite
a bit longer. I hope that it also has improved.

9. REFERENCES AND NOTES

[1] http://www.eclipse.org/gmt

[2] Jorn Bettin, Software Requirements Specification 0.1

for GMT

[3] http://www.eclipse.org - “Eclipse is a kind of universal
tool platform - an open extensible IDE for anything and
nothing in particular”.

[4] http://www.ofbiz.org/, Open for Business

[5] http://www.wfmc.org Workflow management
Coalition.

[6] Workflow Process Definition Interface -- XML Process

Definition Language", document number WFMC-TC-1025,
version 1.0, 25 Oct. 2002.

[7] EUUT-je, Fuutje is Dutch for “small- great crested grebe”.
Bron-stee means “Source-Site”, it is the name of a small
lake behind my house. As an acronym, FUUT-je stands for:
Fantastic, Unique UML Tool for the Java Environment.

[8] http://java.sun.com/xml/downloads/jaxb.html, Java
Architecture for XML Binding (JAXB) Downloads &
Specifications.

[9] http://ws.apache.org/axis/index.html, an
implementation of the SOAP ("Simple Object Access
Protocol").

[10] http://www.rational.com/media/products/Resuable_A
sset_Specification_draft.pdf

[11]We acknowledge trademarks or registered trademarks of
Sun Microsystems Inc., International Business Machines
Corporation, Rational Software Corporation.

[12] http://www.research.ibm.com/journal/sj/392/vanemde
boas.html

[13] UMLX, Ed Willink,
http://dev.eclipse.org/viewcvs/indextech.cgi/~checko
ut~/gmt-home/doc/umlx/index.html

