
A flexible code generator for MOF-based
modeling languages

Lutz Bichler
Institute for Software Technology

University of the German Federal Armed Forces Munich
85577 Neubiberg, Germany

August 30, 2003

Abstract
The Meta Object Facility (MOF) is the core component of OMGt’s Model-

Driven Architecture (MDA). MOF defines the metamodeling language, which is
used to define the languages which are used to model apllications, such as the Uni-
fied Modeling Language (UML). The importance of MOF will grow in the future,
because more and more domain-specific modeling languages will be defined as
extensions to or adaptations of the UML instead of being proprietary.

To be really useful for software development, modeling languages need to
be accompanied by tools. In this paper we present MOmoC, which is a model
compiler based on the Extensible Stylesheet Language Transformations (XSLT)
standard. MOmoC generates implementation code from XMI representations of
MOF-metamodels. The compiler frontend mainly consists of generated code and
creates an object representation from the XMI input file. This object representation
is transformed into an internal XML representation, which is easier to process by
XSLT than the input format XMI. The compiler backend generates implementa-
tion code by applying XSLT stylesheets to the internal XML representation of the
MOF model.

This architecture facilitates the adaptation of the generated code to specific
purposes as well as the adaptation of the compiler to other MOF-based modeling
languages. Therefore, we think that MOmoC can serve as a basis for automating
the model transformations within MDA-based processes.

1 Introduction

Model-driven software development has numerous advantages over manually devel-
oped software. The most important are: higher level of abstraction, facilitated main-
tainability, less erroneous code and higher re-usability ([5]). The higher level of ab-
straction allows the developer to concentrate on the important parts of the system and
to leave the details to a compiler. This increases productivity because the developer
does not need to deal with details, creates consistent implementations of designs and
facilitates to deploy one design to several implementation technologies and/or plat-
forms.

The advantages of modeling languages compared to programming languages are
the same as the advantages of high-level programming languages compared to as-
sembly languages. Therefore the availability of compilers for modeling languages

1

would lead to the replacement of high-level programming languages by modeling lan-
guages similar to the replacement of assembly languages by high-level programming
languages.

For these reasons more and more areas of software development are currently
switching from traditional to model-driven approaches. Therefore, the Object Man-
agement Group (OMG) ([9]) developed the Model-Driven Architecture (MDA) ([6],
[7]) to define a standardized approach to software development based on models. Each
phase within a software development process generates additional informations which
need to be added to the model by a suitable transformation. These transformations
should be supported by tools in order to facilitate process execution and increase the
accuracy of the transformations.

In this paper we present the MOmo Compiler (MOmoC), which is a model compiler
based on OMG and W3C standards. MOmoC generates implementation code from the
XMI ([10]) representation of models which conform to MOF 2.0 ([1]). In the following
sections we provide an overview over the architecture of MOmoC (Section 2) and show
the steps which are carried out during a compilation process (Section 3). Finally we
summarize the results and provide an outlook on future work within the MOmo project.

2 The MOmo Compiler

MOmoC consists of a frontend which generates the internal representation and a back-
end which generates the implementation code. The frontend mainly consists of gen-
erated Java classes, which implement an XMI Reader and a repository for MOF-
compliant metamodels. The generated code is responsible for reading an XMI file
and building an object representation of its content. The code is generated by MOmoC
itself and it is possible to generate the frontend for any other MOF-compliant model-
ing language, which greatly reduces the costs for adapting MOmoC to these modeling
languages.

The object representation created by the parser can be modified by user defined
modules. Currently the MOmo Compiler implementation contains modules for resolv-
ing naming conflicts and mapping types. Naming conflicts are resolved by adding a
number to the end of one of the conflicting names. The type mapping is needed to map
the MOF model to an implementation technology. This is especially needed for mod-
els which contain their own datatype definitions, which need to be mapped to MOF or
target language data types.

The modified object representation is transformed to XML documents in order to be
able to use Extensible Stylesheet Language Transformations (XSLT) ([11]) to generate
implementation code. This is the only input language specific part within MOmoC and
it is planned to replace this by a generic XML generator in future versions.

Using XSLT for the transformation has several advantages. XSLT is a standard,
it is well documented and many implementations are available. The basics are easy
to learn and therefore simple changes to adapt the backend to a specific use case are
straightforward. On the other hand XSLT is powerful enough to be used for complex
code generation tasks. It is even possible to mitigate the performance loss compared
to backends which are written in a programming language by compiling the XSLT
stylesheets to Java.

An optional formatting step finalizes the compilation process. This step is included,
because the output of the XSLT transformation is in many cases badly formatted and
therefore difficult to read and debug. Thus, the code formatters only exist to facilitate

2

backend development.
On implementation level the MOmo Compiler consists of the four main building

blocks, which correspond to the compilation steps we just described. The blocks are
represented by the UML packages Parsers, Modules, Generators and Formatters
in figure 1. The fifth package, MOMOC, contains the "driver program", which controls
the generation process.

Formatters

Modules

Parsers

Generators

MOMOC

Figure 1: Architecture of the MOmo Compiler

The Parsers package mainly contains generated code to read XMI documents and
build an object representation of the MOF model. Currently, the generated code is
compatible to the code of the nsuml-library ([8]), which is the basis for the ArgoUML
([2] modeling tool.

The compatibility facilitates the building of modeling tools for MOF or UML pro-
files using ArgoUML as basis for the user interface implementation. Therefore, the
backend for nsuml-compatible libraries was developed first and the MOMo Compiler
was initially built using the code for its internal model representation. It is planned to
switch to a generated JMI ([3]) implementation, when JMI is available for MOF 2.0.

Beside the generated parser the Parsers package contains hand-written parsers for
MOF 1.4 and UML 1.5, which were used to bootstrap the compiler and are currently
used to import models from UML tools, as long as no MOF modeling tool is available.
The handwritten parsers were originally implemented for MOF 1.4 and are now imple-
menting the rules for transforming MOF 1.4 to MOF 2.0, which are specified in [1],
chapter 11.

The user defined modules are located in the Modules package. All modules im-
plement the predefined interface momoc.Modules.Module and their code is exe-
cuted before the XML generation process starts. The MOmoC standard implementa-
tion contains the DataTypeMappingModulewhich allows to map the datatypes of
the model to datatypes of the target language.

The Generators package contains two generators. The XML generator transforms
the modified object representation to the internal representation in XML. The internal
representation is used as basis for the code generation by the Code generator after-
wards. The main difference between XMI and internal XML representations is that
XMI in most cases contains the XML representations of several model elements, while
our internal representation contains one XML document per model element. This al-
lows a more efficient code generation process, because in most cases the implemen-

3

tation code is generated for single model elements and not for the whole model. An
example for an implementation which contains code per model element is JMI.

The mapping from the object representation to the internal XML representation is
straightforward. Each model element is mapped to an XML document which contains
a root node with the name of the model element. Each reference is mapped to an XML
node with the name of the referenced object which contains the reference. In section 3
we show an example for the mapping of object representation to XML representation.
Additionally to the mappings of the single objects a document for the model is created.
This document contains references to the root level objects of the model.

The code generator applies XSLT stylesheets to the XML document to generate
code in the target language. The code generator is configurable to apply any number
of stylesheets to documents containing specific model elements. For example in JMI
([3]) for each class in a MOF model an interface of the class and a proxy which serves
as factory for instantiating the class is generated. To achieve this generation with the
MOmo Compiler two stylesheets need to be applied to all documents which contain
informations about classes. Therefore, it is possible to configure the system in a way
that it searches for all documents which represent classes and apply a set of stylesheets
to these documents.

Parsing
object model

Adapting

Generating (I)
XML representation

Generating (II)

object model

XMI

Code

Figure 2: Compilation steps

The code formatters for the different target languages are located in the Format-
ters package. Currently, the package only contains formatters for XML, DTDt’s and
Java. Any MOmoC formatter implements the predefined CodeFormatter interface.
Additional formatters for other target languages which also implement this interface
are pluggable into MOmoC.

3 Compilation steps

In the following we show a small example from the MOF 1.4 specification, which
shows the steps of the generation process carried out by the MOmo Compiler. The
processing starts with an XMI-file, which contains the representation of the MOF 1.4
metamodel. We will concentrate on the CLassifier class within the MOF 1.4 meta-
model to show the results of the compilation steps.

Figure 3 shows the representation of the meta-class Classifier from the MOF 1.4
specification in the internal XML format. The document contains a root node <class<
which contains sub-nodes for the properties of the class. The <superclasses> node
contains sub-nodes that reference each inherited class. By two attributes, isParent
and isInherited, directly inherited classes are separated from the classes which are

4

<?xml version="1.0" encoding="ISO8859_1"?>
<class name="Classifier" namespace="Model">
 <superclasses>
 <classref href="Model.GeneralizableElement"
 isParent="true"
 isInherited="true"/>
 <classref href="Model.Namespace"
 isParent="false"
 isInherited="true"/>
 <classref href="Model.ModelElement"
 isParent="false"
 isInherited="true"/>
 </superclasses>
 <ownedAttributes/>
 <ownedOperations/>
 <subclasses/>
</class>

Figure 3: Internal representation of MOF 1.4 meta-class Classifier in XML

indirectly inherited. This facilitates the mapping of the multiple inheritance of MOF
2.0 to programming languages which only provide single inheritance.

The internal representation is transformed into code in the target language by ap-
plying stylesheets. Figure 4 shows a cut-out from the stylesheet which transforms class
representations into nsuml-compatible Java interfaces. It is shown that XSLT templates
are used to generate the implementation code. The content of the templates is Java code
mixed with XSLT processing instructions. The Java code defines a template which is
specific for a certain type of modeling element. The XSLT code is responsible for
filling in the parts which are specific for each instance of the modeling element type.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:include href="interface-attribute.xsl"/>
 ...
 <xsl:template match="class">
 <xsl:variable name="basepackage">
 ...
 <xsl:call-template name="copyright"/>
 ...
 public interface M<xsl:value-of select="@name"/>

 <xsl:if test="not(@name=’Base’)">
 extends
 <xsl:if test="count(superclasses/classref)=0">
 MBase
 </xsl:if>
 </xsl:if>

 <xsl:for-each select="superclasses/classref[@isParent=’true’]">
 <xsl:variable name="class" select="document(@href)/class"/>
 <xsl:choose>
 <xsl:when test="not($class/@namespace=$actualpackage)">
 <xsl:call-template name="createFullyQualifiedClassName">
 <xsl:with-param name="basepackage" select="$basepackage"/>
 <xsl:with-param name="actualpackage" select="$class/@namespace"/>
 <xsl:with-param name="class" select="$class/@name"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 M<xsl:value-of select="$class/@name"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="not(position()=last())">,</xsl:if>
 </xsl:for-each>
 {
 ...
 }
 </xsl:template>
</xsl:stylesheet>

Figure 4: Example of stylesheet implementation

5

The result of applying the stylesheet from figure 4 to the XML document shown
in figure 3 is shown in figure 5. It can be seen that the name of the class, prefixed by
an M, is used as the interface name and that the <xsl:for-each>-loop has added the
superclass to the extends list in the interface definition.

package de.unibwm.ist.mof.model;

import de.unibwm.ist.mof.*;
import de.unibwm.ist.mof.undo.*;

import java.util.Collection;
import java.util.List;

public interface MClassifier extends MGeneralizableElement {
 //attributes
 // association ends
 // resources
}

Figure 5: Example of generated code

4 Summary

This paper describes the MOmo Compiler, a flexible tool to generate implementations
from meta-model definitions. In its default configuration the tool conforms to the MOF
2.0 standard, but it is extensible to support other languages as well. In order be flexible
the compilation process is done in four steps.

The first step, generating an object representation from the XMI input file is im-
plemented by generated code. This code can be generated for any MOF 2.0 compliant
metamodel which makes MOmoC easiliy adaptable to other modeling languages. In a
second step the object representation can be modified by user defined modules in order
to implement specific tasks such as mapping model datatypes to datatypes of a target
programming language.

Within the third step an interal XML representation is created from the object rep-
resentation. Processing these XML representation is easier and more effective than
processing the original XMI representation, because it consists of several small files
which represent single model elements instead of one large representing the whole
model. The final step within the compilation process generates code from the XML
representation by applying XSLT stylesheets.

Our experiences with using XSLT as a template language for code generation are
ambivalent. The advantages in regard to other template languages are better documen-
tation and tool support. The main disadvantage is the verbosity of XSLT which tends
to lead to large and complex stylesheets. Additionally, the current version 1.0 of XSLT
is missing some text manipulation features like which are often used while generated
code. Currently we add these missing features by callbacks to Java code and version
2.0 of XSLT will include the necessary functions.

In the future we will work on the following topics:

• Support for the design of MOF models based on ArgoUML ([2]) and/or Eclipse
([4])

• Increase the usability of MOmoC by providing user interfaces for configuration
and backend development

6

References

[1] Adaptive Ltd, Ceira Technologies Inc., Compuware Corporation, Data Access
Technologies Inc., DSTC, Gentleware, Hewlett-Packard, International Business
Machines, IONA Technologies, MetaMatrix, Rational Software, Softeam, Sun
Microssystems, Telelogic AB, Unisys, and WebGain. Meta Object Facility
(MOF) 2.0 Core Proposal, April 2003. ad/2003-04-07.

[2] ArgoUML. http://www.argouml.org.

[3] Ravi Dirckze. JavaTMMetadata Interface (JMI) Specification, Version 1.0.
Unisys, 1.0 edition, June 2002.

[4] Eclipse. http://www.eclipse.org.

[5] Thomas Kühne. Automatisierte Softwareentwicklung mit Modellcompilern.
thema Forschung, pages 116–122, January 2003. (in german).

[6] Joaquin Miller and Jishnu Mukerji. Model Driven Architecture. Object Manage-
ment Group, July 2001. Document number ormsc/2001-07-01.

[7] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Object Manage-
ment Group, June 2003. Document number omg/2003-06-01.

[8] Novosoft. Novosoft UML Library (NSUML). http://nsuml.sourceforge.net.

[9] Object Management Group. http://www.omg.org.

[10] Object Management Group. Meta Object Facility (MOF) 2.0 XMI Mapping, April
2003. ad/2003-04-04.

[11] W3C. XSL Transformations (XSLT) Version 1.0, November 1999. W3C Recom-
mendation, http://www.w3.org/TR/xslt.

7

