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Abstract 
 
ATL (Atlas Transformation Language) has been defined to perform general transformations within the MDA framework 
(Model Driven Architecture) recently proposed by the OMG. We are currently learning from the first applications 
developed with this language.  The example used here is a transformation from XSLT to XQuery.  Since these are two 
standard notations that don’t pertain to the MDA space, we first need to provide some justification about this work.  The 
global organization of technological spaces presented at the beginning of the paper is intended to answer this first question.  
Furthermore we propose the original characterization of a technological space as a framework based on a given unique 
meta-model.  After having briefly presented the ATL framework, we describe the XSLT2XQuery transformation.  We may 
then draw several conclusions from this experiment, suggesting possible improvements to general model transformation 
frameworks. ATL is still evolving since it is supposed to match the forthcoming QVT/RFP recommendation when it is 
ready. As a consequence, the concrete expression of the transformation presented in this paper may change, but the general 
ideas should remain stable. 
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1. Introduction 
Within the OMG MDA initiative, a request of proposal 
has recently been issued on model transformation 
support.  The MOF/QVT RFP [13] aims at defining a 
domain-specific language (or a family of such languages) 
for querying, viewing and transforming models.  As part 
of this effort, the ATLAS group at the University of 
Nantes and the TNI-Valiosys Company are proposing 
ATL (Atlas Transformation Language) [15]. The 
TNI/Valiosys Company will deliver an industrial-
strength version of ATL while ATLAS is working on a 
free software release of the current transformation engine 
and of a library of transformation components.  Several 
model transformation applications are currently being 
developed in this language.  This paper presents one of 
these initial applications, not the most typical but with 
interesting properties:  transforming XSLT [24] into 

Xquery [25].  Many characteristics of this problem are 
challenging and provide a significant test to evaluate 
the suitability and adaptability of ATL. 

The natural application domain of ATL is to express 
MDA-style model transformations, based on explicit 
meta-model specifications [5]. For example we can 
transform a UML model into another UML model 
where all the public class attributes would be privatized 
and corresponding accessors added.  Another example 
would be to transform a UML 1.5 model into an EJB 
1.2 implementation.  This area of research and 
development is currently very active since we can now 
envision large libraries of adaptable and composable 
transformation components that could be acquired or 
developed by IT departments of various companies in 
order to speed up and to improve the quality of their 
software development and maintenance process.  The 
main ideas behind this evolution are the consideration 
of models as first class entities and of transformations 
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as models.  One of the major goals of the MDA initiative 
[21] [3] is to apply these model transformation 
frameworks to the automatic generation of platform 
specific models (PSMs) from the pure business 
expression of platform independent models (PIMs). 
Proceeding in this way may give some hope to be able to 
cope with the rapidly changing technological platforms 
(CORBA, XML-SOAP, Java-EJB-J2EE, ECLIPSE, C#-
DotNet-Phoenix, etc.). The corresponding software 
development and maintenance cycle would then be 
viewed as a chain of successive transformations. 

Many efforts are presently addressing the problem of 
reusability of transformation components, since this is at 
the hearth of the MDA proposal.  We participate in this 
general effort by building up our own library of ATL 
transformation components.  The motivating example we 
have chosen to discuss here is however less 
conventional.  Instead of using classical meta-models 
like UML, SPEM [16], CWM, Java, etc., we are going to 
look outside the strict boundaries of MDA model 
engineering to experiment on how ATL could be applied 
to outside technological spaces as well.  After having 
introduced this notion of technological space, sometimes 
abbreviated TS in this paper, we shall present the target 
problem situated inside the XML document space:  
transforming XSLT documents into XQuery documents.  
Of course we know that this could be done inside the 
XML space, by applying either XSLT or XQuery.  If we 
import the problem into the MDA technological space, 
this is mainly to compare both approaches.  It is also to 
tackle a problem more difficult than simple UML model 
refactoring and to assess the qualities of our ATL 
language. Since our ATL engine has been working for 
some time now, this kind of expreriment allows us to 
gain practical exprerience and is much helpful to 
evolving the language and its environment 
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Figure 1 - Multiple ways to transform models 

So the problem we are tackling is illustrated in Figure 
1. We want to transform an XSLT document into a 
corresponding XQuery document.  This should be a 
semantic-preserving transformation, since the XQuery 

program should perform similarly to the XSLT 
program on similar XML input files.  If we were to 
solve completely this problem inside the XML 
technological space, we would probably use an XSLT 
transformation as suggested in the left part of Figure 1. 
This is not our intention here.  What we propose to do 
is first to import the problem (i.e. the XSLT document) 
from the XML space to the MDA space, i.e. making 
this a true MDA model (1). Then we apply an ATL 
program to transform this model into another model 
corresponding to an XQuery document (2). Finally we 
export back the result from the MDA space to the XML 
space (3). We hope to learn several lessons from this 
work, possibly by defining a general approach that 
could be applied in other contexts as well. 

After procedural refinement in the 70's and object 
composition in the 90's, model transformation seems 
now to follow as the dominant paradigm in software 
engineering. There are a lot of different approaches to 
model transformation and several classifications and 
comparisons are currently being offered [4]. The most 
important difficulty in these classifications is giving a 
precise scope to the domain of model transformation. Is 
XSLT a model transformation language? This brings us 
to answer the central question of what exactly is a 
model. One of the most general definitions has been 
given in [19]: "A model is a formal description of a 
complex application artifact, such as a database 
schema, an application interface, a UML model, an 
ontology a message format". This is a good starting 
point because it considers for example an XML 
document to be a model. It does not help much 
however to define a unified model transformation 
language or a family of such languages. Since the 
problem of interoperability between different 
transformation languages is fundamental, we need a 
more precise definition than the previous one. The 
solution we propose here is to consider that a UML 
model, an XML document or a Java program are all 
models, but models pertaining to different TSs. A UML 
model for example pertains to the MDA TS as 
standardized by OMG. Proceeding in this ways has 
several advantages. For example it allows considering 
uniformly what is usually called model-to-model, 
model to code or code-to-code transformations. If we 
manage to give a sufficiently precise and operational 
definition of a TS, it will then be possible to state 
precisely what is an internal transformation inside a 
given TS and what is an import-export conversion 
between two different TSs.  
The presentation given in section 2 has the purpose of 
illustrating the practical importance of a precise 
definition of TSs. One of the original views offered is 
that each TS is built around the implicit or explicit 
assumption of a unique given meta-meta-model.  
This paper expresses a view rather opposite to the one 
proposed in [17]. At that time, we explored the 
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possibility of exporting the model transformation 
problem from the MDA TS to the XML TS because there 
were no available transformation engines inside the 
MDA TS. Now, following the OMG MOF/QVT RFP, 
there are already some existing engines like the ATL one 
that are beginning to be available. As a consequence we 
may now seriously explore below the alternative 
approach of exporting a XML document problem for 
solution into the MDA technological space. 

This paper is organized as follows.  The notion of 
technological space is presented in Section 2. The ATL 
language is described in section 3. The motivating 
example of transforming an XSLT document into an 
XQuery document is discussed in detail in section 4. 
Section 5 gives the conclusions of this experiment. 

2. What is a technological space?  

2.1 The notion of technological space 
We employ the concept of Technological Space [8] as 
the central concept in our analysis and comparison.  A 
technological space is a working context with a set of 
associated concepts, body of knowledge, tools, required 
skills, and various other possibilities. It is composed of a 
representation system and a set of operators to access, 
update and process the information expressed in this 
common representation system. It is often associated to a 
given user community with shared know-how, 
educational support, common literature and even 
workshop and conference meetings.  It is at the same 
time a zone of established expertise and ongoing research 
and a repository for abstract and concrete resources.  
Although it is difficult to give a precise definition of a 
Technological Space, some of them can be easily 
identified, for example:  programming languages 
concrete and abstract syntax (Syntax TS), Ontology 
engineering (Ontology TS), XML-based languages and 
tools (XML TS), Data Base Management Systems 
(DBMS TS), Model-Driven Architecture (MDA TS) as 
defined by the OMG as a replacement of the previous 
Object Management Architecture (OMA) framework. 

Figure 2 provides a global view of these five TSs.  It 
shows that each space is defined according to a couple of 
basic concepts:  Program/Grammar for the Syntax TS, 
Document/Schema for the XML TS, Model/Meta-Model 
for the MDA TS, Ontology/Top-Level Ontology for the 
Ontology TS and Data/Schema for the DBMS TS. 

Each of the technologies presented in Figure 2 has 
basic properties and features, strong and weak points.  To 
name some, the Syntax TS deals with executable 
systems; the Ontology engineering TS has some very 
precise definition tools like conceptual graphs and 
description logics, the MDA TS has received industrial 
agreement and backup on its Unified Modeling 
Language (UML) and Meta Object Facility (MOF) 

standard recommendations; the DBMS TS has a long 
record of dealing with huge volumes of structured data; 
the XML TS has also wide industrial acceptance in the 
field of semi-structured data representation; the Syntax 
TS is a very rich and stable technology that has been 
maturing for more than fifty years with formal tools 
(e.g.  context-free or attribute grammars) and mapping 
these onto executable machines; the XML TS has some 
interesting and widely available tools such as XSLT 
transformation engines; the MDA TS has made 
available many industrial CASE tools like Rational 
ROSE, Argo UML, etc.  supporting model creation and 
browsing. 
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Figure 2 - Some technological spaces with some 
relations among them 

Another idea, illustrated by Figure 2 is that no TS is 
an island.  There are bridges among the spaces and 
these bridges also have particular properties.  In Figure 
2 we do not represent all the bridges between the 
various TSs and the figure does not suggest any 
superiority for any one of them. 

 

 

Figure 3 - Code migration 

Bridges allow import-export of artifacts from one 
space to another.  Some bridges may be bi-directional 
and some may be one-way bridges.  Bridges are 
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especially useful when a given operation may be 
performed more easily in one space and the result may 
then be imported into other space.  For such an operation, 
software engineers need to compare the facility of 
achieving it in one space compared to the other one and 
also to evaluate the import/export facilities between the 
spaces.  For illustration purposes, we take an example 
mentioned in [18] and illustrated in Figure 3. Recently an 
approach to migrate Java applications to C# applications 
was proposed as a set of tools by Microsoft (direct D 
transformation). The corresponding JUMP framework 
(Java User Migration Path) is entirely situated inside the 
Syntax TS. Alternatively, it is also possible to perform a 
reverse engineering operation from Java to a UML-like 
model (R operation), followed by a forward engineering 
operation to generate the C# program (F operation). 
According to the details of this operation (the precise 
pivot meta-model used), the direct D operation will be 
different from the combined R+F operation.   

 
We have mentioned some TSs in the previous 

descriptions.  The number of these spaces is obviously 
much more important and their structure and mutual 
relations are quite complex.  The space of abstract and 
concrete syntax covers for example executable 
programming languages.  As we know, there are many 
such different languages (imperative, declarative, 
procedural, functional, object-oriented, etc.). Each has its 
own properties that may accordingly be defined as sub-
spaces. 

Table 1- Strong and weak points of some TSs 

 XML MDA Syntax TS Ontologies 

Executability Poor Poor Excellent Poor 

Aspects Good Excellent Poor Fair 

Formalization Poor Poor Excellent Fair 

Specialization Fair Good Poor Fair 

Modularity Good Good Good Poor 

Traceability Good Fair Poor Excellent 

Transformability Excellent Fair Fair Fair 

 
Table 1 summarizes how some technologies do better 

on some problems than others.  Once again, this is only 
for illustration of the proposed approach.  Stating that the 
XML technology performs very efficiently on 
transformation (with the help of XSLT) and that 
programming language systems have much less to offer 
is a very abrupt simplification that should be completed.   
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Figure 4 - Java standard source code and JavaML 
representation 

In order to be more precise about the distinction 
between TSs, let us look at another example.  The same 
Java program may be represented in three different 
technological spaces:  programming language syntax, 
XML document and MDA. The former two are 
external models and the latest is internal from the point 
of view of the MDA technological space.  This is 
illustrated in Figure 4 and Figure 6. The standard 
source text of a given program, the XML document of 
the same program expressed in the JavaML [2] DTD 
for example and finally the model of the same Java 
program expressed in a given Java meta-model may be 
converted one from the other by bridges between these 
technological spaces.  However, inside each 
technological space, there are tools to handle the 
specific representation.  It would be a pity to rebuild all 
these tools inside the MDA space if they perform well 
in other spaces.  It seems much better to propose well-
engineered bridges between the different spaces. 
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Figure 5 - Java meta-model and model 
representation 
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Figure 6 - Representing the same data in three 
different technological spaces 

2.2 On the pertinence of TSs 
The notion of TS allows us to deal more efficiently with 
the ever-increasing complexity of evolving technologies.  
There is no uniformly superior technology and each one 
has its strong and weak points.  The "my technology is 
superior to yours" attitude is generally counter-
productive. 

Our privileged point of view is the MDA TS, where 
the basic concepts are MOF-compliant models and meta-
models.  The present work is however situated at the 
boundary between the MDA TS and the XML TS 
(documents and schemas). We wish to solve a problem 
of the XML TS inside the MDA TS. As previously 
mentioned reverse operation was evaluated in [17]. A 
MDA model, serialized in XMI [14], is exported from 
the MDA TS to the XML TS. Then this model is applied 
a XSLT transformation and the result is finally imported 
back as a model. XMI should thus be considered as part 
of the bridge between the MDA TS and the XML TS. 

A careful consideration of various TSs shows that 
each one is based on the giving of an implicit or explicit 
meta-meta-model. The MDA TS, as defined by OMG, is 
based or the MOF which is aligned to the UML 
infrastructure. There are other different choices in the 
model management field like the sNets proposal [10] or 
the Vanilla meta-meta-model proposed in [19]. MOF, 
sNets and Vanilla are three examples of meta-meta-
models that define similar TSs. They are all based on 
directed labeled graphs, but differently constrained. The 
MOF additionally defines a navigation and assertion 
language for these graphs called OCL. If we talk about 
trees and not graphs, the situation is similar. There are 
two well-known meta-meta-models constraining two 
families of trees. The first one is XML as presented later 
in Figure 12. XML trees are special trees2 (well-formed 
i.e. respecting the meta-meta-model sketched in Figure 
12).  The second one is EBNF, which allows dealing 

                                                           
2 The description of the XML presented  in Figure 12 is 
only minimal. We have defined an extended OCL-
decorated XML meta-model. This is outside the scope of 
this paper. 

with another family of trees (syntactical trees) for 
conventional programming languages. Of course in 
some case the programming language may have a 
special form allowing defining a specific meta-meta-
model (e. g; Lisp, Prolog, etc.). We see then that each 
TS is rooted on a specific meta-meta-model. 

As a final remark we should note how active is the 
field of transformation in the various TS. This paper 
deals with transformations in the MDA TS 
(MOF/QVT). The application field used here mentions 
two important transformation formalisms of the XML 
space (XSLT and XQuery), but there are many other 
concurrent approaches being currently defined for 
XML. Finally, in the programming language TS (e.g. 
Java), there is currently a very important activity going 
on on the same topic, for example: [6], [7], [22], [1], 
and many more. 
 

3. Presentation of the ATL 
language 
ATL is a model transformation language for the MDA 
corresponding to the ongoing QVT RFP ([13],[9], etc.). 
Its abstract syntax is specified as a MOF meta-model 
and a corresponding textual concrete syntax has been 
defined. An additional graphical concrete syntax also 
exists, which offers a way to represent a partial view of 
ATL declarative transformation rules. 
This section presents the current version of ATL, which 
is still evovlving towards OMG QVT compliance and 
increased functionnalities. 
After a brief overview of how queries, views and 
transformations are handled in ATL, its abstract syntax 
will be described. Textual and graphical concrete 
syntaxes will then be presented and some properties of 
the language will be analyzed. 

3.1  Basic description of ATL 

3.1.1 Queries 
In ATL a query is an OCL expression, which can return 
primitive values (Boolean, String, Integer…), model 
elements, collections or tuples, or any combination of 
these (collections of tuples…). 
The query can navigate across model elements and also 
call query operations on them. These operations can be 
defined either in the meta-model or along with the 
query. Adding such operations to model elements 
(using OCL constraints with the <<definition>> 
stereotype, as defined in [11]), to be used by a query, 
offers interesting possibilities: recursion can be used, 
model visitors can be written… 
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3.1.2 Views 
Views are a special case of transformations. However, 
some properties of a transformation language can help to 
make views more useful: 

• Support for incremental transformations makes 
it possible to update a view from its source 
without executing the whole transformation 
again. 

• Bidirectionality can be used to define 
changeable views, which propagate their 
modifications to their source models. 

The present version of ATL supports neither of these 
functionalities. However, we think a similar result 
(bidirectional updates) could be achieved using 
traceability information generated by the execution 
engine (see later). 

3.1.3  Transformations 
An ATL transformation model can transform a set of 
source models to a set of target models. The meta-models 
of every model (source or target) must be specified and 
be available for the transformation to be executed. ATL 
is actually able to handle any model defined using a 
MOF meta-model3. This includes meta-models and the 
meta-meta-model, due to the reflexivity of the latter. It is 
for instance possible to transform a UML model into a 
MOF meta-model, or to query all the constraints given in 
the MOF meta-meta-model. Navigation over models is 
specified using OCL. 

3.2 Detailed description of abstract syntax 

3.2.1 Navigation 
Only navigation over fully initialized elements is 
allowed. A target element can only be definitively 
initialized at the end of the execution of the 
transformation. Therefore, navigation in ATL can only 
be done over source elements coming from source 
models and source or target meta-models. 
If navigation over the target elements of a transformation 
model is necessary, it must be done in another 
transformation applied to the output of the first one. 

3.2.2 Functions and operations 
In OCL, operations can be defined on model elements. 
ATL reuses this possibility and allows a modeller to 
define operations on elements of source meta-models and 
on the transformation model itself. 

3.2.3 Transformation rules 
Different kinds of rules exist in ATL, based on the way 
                                                           
3 This includes meta-models and the meta-meta-model, 
due to the reflexivity of the latter. 

they are called and on how they specify their result. 
The part of the ATL meta-model defining rules is given 
in Figure 7. 
 

Rule

+name : String

MatchedRuleCalledRule

Operation

 (from OCL) 

ActionBlock OutPatternInPattern

0..1 +actionBlock +outPattern0..10..1 +inPattern +outPattern0..1+actionBlock0..1+inPattern0..1

 

Figure 7 - Rules in ATL 

 
A rule is either explicitly called using its name and 
with parameters (a called rule), or executed as a result 
of the recognition of an inPattern in the source models 
(a matched rule). The result of the execution of a rule 
can either be declared using an outPattern, 
implemented in an imperative section, or both. 
A rule with an inPattern and an outPattern is called a 
declarative rule (whithout any imperative section, it is 
a fully declarative rule). A rule with a name, formal 
parameters, an imperative section and without any 
outPattern is called a procedure. Other combinations 
are simply called hybrid rules. 
This makes ATL a hybrid language. In [4], such a 
language is mainly described as using a declarative 
approach to select rules, which imperatively specify 
how the work is to be done. ATL has that kind of rules, 
but fully declarative or fully imperative rules can also 
be defined. 
 

OutPatternElement

PatternElement

+name : String

InPatternElement

OclModelElement

 (from OCL) 

+mapsTo

+type
0..*

+mapsTo

0..*
+type

 

Figure 8 - Pattern elements 

3.2.3.1 Source pattern 
An ATL matched rule specifies a source pattern (or 
inPattern, or input pattern) as a set of types coming 
from source meta-models, associated to variable names 
and optionally filtered using an OCL Boolean 
expression. This filter, accesses the in elements through 
their variable names and returns true when a particular 
set is accepted by the rule. A source pattern is therefore 
a set of nodes from the source models, which have a 
specific relation, checked by the filter. A corresponding 
view of the ATL meta-model is given at Figure 9, 
pattern elements being defined at Figure 8. 
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InPatternOclExpression

 (from OCL) 

InPatternElement

DerivedInPatternElement

+filter

0..1

+elements 1..*

+value

0..1

+elements 1..*

0..1

+filter

+value

0..1

 

Figure 9 - Source patterns 

 
A special case arises when all the elements recognized 
by the inPattern of a rule are in the same model. As a 
matter of fact, the subgraph formed by these elements 
can be and is often connected, which means that any 
information retrieved from one of the source elements by 
navigation could be obtained by navigating from any 
other. It seems to mean that in these cases, the additional 
elements are not necessary and that only one could be 
kept. However, several points must be considered : 
• Some navigation expressions might be expressed 

more concisely from one node than from the others. 
• Since the transformation engine must analyze every 

possible pattern and apply the discriminator on it, 
the computational gain resulting from the shortening 
of some navigation expressions might be lost. 

• If a rule creates several elements from a single one, 
every generated element will be associated to it. It is 
sometimes necessary, however, that a part of the 
target elements are associated to other specific 
source elements. 

A solution provided in ATL is the possibility to declare 
source elements as derived from others. In this way, if 
two elements are connected, one of them is computed 
from the other by navigation but can still be associated to 
a specific target element. 

3.2.3.2 Target pattern 
An target pattern (or outPattern, or output pattern), as 
specified on Figure 10,  is a set of types coming from 
target meta-models associated to variable names and 
bindings. When the rule containing the target pattern is 
executed (either for a called or for a matched rule), the 
target elements of the specified types are created. A 
binding specifies the value used to initialize a specified 
property of an instance. A target pattern is consequently 
a set of nodes, which can be linked together by the 
bindings. 

OutPattern

OutPatternElement

Binding

+propertyName : String

OclExpression

 (from OCL) 

+elements 1..*

+bindings 0..*

0..1

+value+elements 1..*

+bindings 0..*

+value

0..1

 

Figure 10 - Target patterns 

Edges of target models, viewed as graphs, are created 
by bindings and can be set in a rule or between rules, 
using the target-from-source resolution algorithm 
described later as part of execution semantics in 3.2.4. 

3.2.3.3 Imperative block 
The imperative block of an ATL rule specifies a 
sequence of instructions that are to be executed after 
the application of the outPattern (if present). The 
language used is designed to be compatible, through an 
appropriate transformation, with Action Semantics. 
As the latter is already standardized and there is a 
direct mapping between ATL abstract and concrete 
syntaxes for imperative instructions, these are not 
described here but only in the presentation of the 
concrete syntax in 3.5.2. 

3.2.3.4 Rule inheritance 
A rule can extend another one. The new rule can 
specify additional elements or restrictions on its source 
pattern. A restriction can be in the form of a new filter 
(which will be logically anded with the old one) or of 
the redefinition of a source element with a type 
extending the old one. Additional target elements or 
bindings can also be specified. 

3.2.3.5 Abstract rules 
An abstract rule is a rule that cannot be executed as 
such but must be extended to be useful. 

3.2.4 Execution semantics 
Executing an ATL transformation model requires 
several steps. If the model is given in textual format, it 
is first parsed and transformed to a model defined using 
the ATL meta-model. This model is then statically 
checked for semantic errors against the ATL meta-
model and source and target meta-models. The next 
step can either be an interpretation or a compilation 
followed by an execution. In both cases, the application 
of an ATL transformation follows the semantics 
described in this section. 
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If there is a called rule marked as entrypoint (only one is 
allowed) it is executed first. This rule can call any 
number of called rules until it reaches its end. 
 
Then, the matched rules are executed. In a first time, the 
output elements are instantiated. For each rule, every 
combination of elements matching the types of its 
inPattern is tried and checked against its filter. It the 
latter returns true, a pattern has just been recognized 
and the rule is matched for a specific set of elements. 
Each time a declarative rule is matched, its target 
elements are instantiated. This is simply done by 
instantiating each element of its outPattern. A run-time 
link between the rule, the recognized and newly 
generated elements is created. This link associates one 
output element to each input element, which becomes the 
default element for implicit target-from-source 
resolution. A given source element cannot participate to 
more than one inPattern, otherwise a runtime error 
occurs. As a matter of fact, this cannot be statically 
detected in the general case; some filters would have to 
be checked for not being simultaneously true. 
In a second time, the bindings are applied to initialize 
every output element. Depending on the type and 
multiplicity of the property to be set, different actions 
can be done: 
• If the type is primitive (String, Integer, Boolean, 

Double) and the multiplicity has an upper bound of 
1, the result of the evaluation of the right part is 
simply used to set the property (which is an 
Attribute). 

• If the type is complex (a Class of the meta-model) 
and the multiplicity’s upper bound equals 1, the 
right operand of the binding must evaluate to a 
model element of one of the source models 
(navigation over target elements being prohibited). 
The value, which will be used to set the property, 
cannot be this model element, which is not in the 
same model as the property’s owner. However, at 
this point, a link might exist between this source 
element and some target elements, if it belongs to a 
matched subgraph of a rule (the same or another). If 
it does not, there is an execution error because the 
binding cannot properly initialize the property. If it 
does, however, the default element, associated to 
this source element by the run-time link, is used to 
set the property. If another element is explicitly 
specified, it is used in place of the default one. This 
is the target-from-source resolution algorithm. 

• If the upper bound of the multiplicity is greater than 
1, there are two possibilities: 
o The right operand of the binding evaluates to a 

single element (primitive or complex), which 
type matches the type of the property 
(otherwise, it would have been statically 

plotted as a semantic error). This element is 
added to the collection of elements of the 
property. 

o The right operand evaluates to an OCL 
Collection of elements (primitive or 
complex), which types match the type of the 
property. The size must match the 
multiplicity, or there is an execution warning 
(an imperative section can correct this). 
Every element is added to the collection of 
elements of the property. 

In a third time, the imperative blocks of the matched 
rules are executed. 
 
Eventually and provided it exists, the called rule 
marked as endpoint is executed. 
 
Note: called rule containing an outPattern are not 
executed as matched rules. The target elements are 
simply created and initialized before the execution of 
the imperative block, but are not automatically linked 
to any source element. 

3.3 Reflection 
During the execution of a transformation, source 
models, source and target meta-models are navigable. 
The ATL meta-model and the presently executed 
transformation model itself are also navigable. 
Rules can be explored from their names and the whole 
model can be accessed by its name. 

3.4 Traceability in ATL 
Traceability is achieved in ATL by having the 
transformation engine storing runtime information on 
the transformation in a model based on a specific meta-
model. 
Rather than defining such a meta-model and fixing 
traceability model generation rules, we think it would 
be preferable to define a customizable mechanism 
using reflection.  
The specification of this mechanism is out of the scope 
of this paper. It will be defined in an ulterior document. 

3.5 Textual concrete syntax 

3.5.1 Declarative constructions 
A concrete syntax has been defined and mapped to the 
ATL meta-model in order to make it possible to 
textually express transformation models. 
Type names are prefixed by their meta-model names to 
prevent name collision in case of multiple source meta-
models. For instance, with UML as a source meta-
model, the following source pattern applies the rule to 
each pair composed of a Class and one of its Attribute: 
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  from 
    c : UML!Class, 
    a : UML!Attribute 
    (a.owner = c) 
 
Two nodes, a Class and one of its Attribute, are 
recognized by this pattern. A performance issue appears 
here: this inPattern forces the execution engine to check 
every pair of class and attribute against the filter. 
Declaring the class as derived would solve this problem: 
 
  from 
    a : UML!Attribute, 
    derived c : UML!Class = a.owner 
 
Note that deriving the attribute from the class would not 
be equivalent. 
 
An outPattern is defined in a similar way. The operator 
used in bindings is <-. Here is how the instantiation of 
an UML!Class and of one of its UML!Attribute is 
declared: 
 
  to 
    c : UML!Class, 
    a : UML!Attribute (owner <- c) 
 
Declarative rules are defined by associating a target 
pattern to a source pattern. For instance, here is how a 
simple mapping from UML to a relational database meta-
model (RDBMS) could be defined: 
 
rule Class2Table { 
  from class : UML!Class 
  to 
    table : RDBMS!Table 
      mapsTo class ( 
      name <- c.name 
    ), 
    pk : SimpleRDBMS!Key ( 
      name <- class.name, 
      owner <- class, 
      column <- 
        class.attribute->select(e| 
          e.kind = 'primary' 
        ) 
    ) 
} 
 
rule Attribute2Column { 
  from attr : UML!Attribute 
  to 
    col : RDBMS!Column mapsTo attr ( 
      name <- a.name, 
      owner <- a.owner 
    ) 
} 
 
The source element to which a target element is 
(optionally) associated is specified using the mapsTo 
keyword. 

In the case of a target-from-source resolution, which 
does not use the default target for a specific source, the 
target element variable name of the rule must be given. 
For instance: 
 
rule Association2ForeignKey { 
  from asso : UML!Association 
  to 
    fk : RDBMS!ForeignKey 
      mapsTo asso ( 
      refersTo <- 
[Class2Table.pk] ia.destination, 
      owner <- ia.source 
    )  
} 
 
A runtime error occurs when a source element has not 
been transformed by the given rule. 
A problem arises when several rules can have 
generated the specific target element from the source 
one. For instance, if the source element is a Classifier, 
the target could have been created either by a 
Class2Table or by an Inteface2Table rule. In this case, 
both rules must inherit from a single rule declaring an 
abstract output element. 

3.5.2 Imperative instructions 
The optional imperative block of a rule is composed of 
a sequence of instructions, which are to be executed in 
the given order. Several kinds of instructions exist and 
are presented thereafter. 

3.5.2.1 Expressions 
Expressions are written in OCL and can be used as 
instructions. This would be useless in case of simple 
query expressions, but the call to non-query operations, 
such as an imperative rule, is allowed. 

3.5.2.2 Variables 
Variable declaration use an adapted OCL syntax: 
 
let varName : varType = initialValue; 
 
Variables are therefore typed and must be defined 
before first use. 

3.5.2.3 Assignment 
The binding operator <- is reused with the same 
semantics (including automatic target-from-source 
resolution) as an assignment operator. The simple 
assignment operator := can be used when automatic 
resolution is not required. Its left operand simply takes 
the value of its right one. 
An assignment is an instruction but not an expression. 
The following instruction is therefore illegal: 
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myFunction(myVar <- ‘a string’); 

3.5.2.4 Instances handling 
Whereas instances are automatically created in 
declarative rules, it is possible to explicitly create or 
delete an object in an imperative block. 
Instance creation uses the new operator: 

 
let myClass : UML!Class = 

new UML!Class(); 
 
Removal of an instance is performed by the delete 
operator: 
 
delete myClass; 
delete myClass.contents->select( 

e|e.oclIsTypeOf(UML!Attribute) 
); 

 
The parameter of delete must be an element of a 
target model or a collection of such elements, in which 
case every element of the collection is deleted. Note that 
the collection itself cannot be explicitly deleted since it is 
only a runtime instance, which will not persist in any 
target model. Such instances are often created in OCL 
(such as in certain iterators), which assumes the 
existence of a mechanism such as a garbage collector. 

3.5.2.5 Conditional statements 
OCL already provides an if-then-else construction. It is 
however an expression and could be compared to the 
ternary operator (condition ? if-true : if-
false) of languages such as C and Java. 
Yet, we need a conditional instruction close in meaning 
to the if statement in C or Java. The if statement in ATL 
has the same syntax than in these languages: 
 
if(condition1) { 
  -- if condition1 
} else if(condition2) { 
  -- if (not condition1) 
  -- and condition2 
} else { 
  -- if (not condition1) 
  -- and (not condition2) 
} 
 
A switch statement is also defined, with broader 
semantics (in comparison to its C or Java equivalent): the 
expression on which the condition is tested can be non-
scalar. The first case with an expression having the 
same result has the first one will have its instruction 
block executed. 
 
switch(expression) { 
  case expression1: 
  -- if (expression = expression1) 
    break; 

  case expression2: 
  -- if (expression <> expression1) 
  -- and (expression = expression2) 
    break; 
  default: 
  -- if (expression <> expression1) 
  -- and (expression <> expression2) 
    break; 
} 

3.5.2.6 Loop statements 
while and do while loop statements are defined 
using the same syntax found in C or Java: 
 
while(condition) { 
-- while condition is true 
} 
 
and 
 
do { 
-- executed at least once and while  
-- condition is true after that 
} while(condition); 
 
A loop statement iterating over the elements of a 
collection is also defined: 
 
foreach element in collection { 
 
} 

3.6 Graphical representation 
ATL transformation models can be partially 
represented using a graphical concrete syntax. Not 
every language construction has a graphical 
counterpart, only main ones. The primary idea behind 
the existence of this syntax is that patterns of 
declarative rules are often best apprehended when one 
can actually see which elements of a meta-model are 
involved. 
However, the best way to represent OCL expressions 
seems to be the standardized concrete syntax. 
Consequently, neither filters of source patterns nor 
bindings of target patterns can be drawn. 
Figure 11 shows how the first of the two rules 
presented in the previous section would be drawn. It is 
a graphical representation of the types of the elements 
composing the pattern recognized by the rule (a Class 
here) as well as the types of the target elements (a 
Table here) and the link between source and target 
elements. The names of the variables holding the 
references to these elements at runtime are also shown 
inside the pins of the rule connected to the meta-model 
elements. It is immediately obvious here that a Class 
will be transform into a Table. 
This syntax can be used to help understanding a 
particular transformation, or even to assist its developer 
who can then have a more global view of what he/she 
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is modelling. Besides, a modelling tool could provide a 
GUI allowing a hybrid development alternating graphical 
rule overview inner mechanism specification. 

3.7 Some properties of the language 

3.7.1 Directionality 
In ATL, a transformation is unidirectional. We believe a 
language designed so that every transformation model 
can be applied in both directions would have limitations. 
However, when a transformation model contains only 
fully declarative rules, it should be possible to derive a 
part of the symmetric transformation automatically, 
depending on the complexity of the expressions used in 
the bindings. 
For instance, in a simple one-to-one mapping, the rule: 
 
rule Class2Class { 
  from mc : MOF!Class 
  to 
    uc : UML!Class mapsTo mc ( 
      uc.name <- mc.name 
  ) 
} 
 
could be automatically derived into: 
 
rule Class2Class { 
  from uc : UML!Class 
  to 
    mc : MOF!Class mapsTo uc ( 
      mc.name <- uc.name 
  ) 
} 
 
The conditions on a transformation model allowing an 
automatic symmetrical transformation derivation are yet 
to be defined. Once they are, a set of OCL constraints on 
ATL transformation models could be specified to test 
whether a particular model is reversible. 

3.7.2 In-place transformations 
The target model is always a new one in ATL, but a 
special kind of ATL transformations has been given a 
very close semantics to in-place transformations: 
The source model is first copied to the target model and 
then transformation rules are applied. Such a 
transformation model can be thought as having a set of 
implicit rules copying all elements (meta-model 
dependant), and a set of explicit rules written by the 
modeller. 

3.7.3 Incremental transformations 
ATL offers no direct support for incremental 
transformations. However, we think some cases needing 
such transformations could be implemented using 
traceability. This is an area of ongoing resarch. 

Class2Table

class table
Class

Table

Source
meta-model

Target
meta-model

Transformation 
model

 

Figure 11 - Example of ATL graphical syntax 

 

4. Transforming XSLT into 
XQuery 
For the first experiments of ATL, we chose a 
transformation between two languages of 
transformation in the XML technological space. The 
goal of this experiment is to prove the feasibility of the 
XSLT2XQuery transformation in the MDA 
technological space with ATL.  In practice, we will 
require import/export facilities and a composition of 
transformations.  The presentation of the 
XSLT2XQuery transformation begins by presenting the 
different meta-models used in the transformation.  The 
second sub-section presents the transformation process.  
Finally the last section describes the XSLT2XQuery 
transformation in the MDA technologic space. 

4.1 Meta-models presentation 

4.1.1 The XML meta-model 
The XML meta-model is part of the bridge between the 
XML TS and the MDA TS.  We chose to use a meta-
model similar to the one proposed by NetBeans [23]. 
The XML meta-model presented on Figure 12 
describes an XML document (Document) composed of 
one root node (RootNode). Node is an abstract class 
having two direct children :  ElementNode and 
AttributeNode. ElementNode represents the tags, for 
example a tag named xml:  <xml></xml>. 
ElementNodes can be composed of many Nodes. 
AttributeNode represents attributes, which can be found 
in a tag, for example the attr attribute:  <xml 
attr="value of attr"/>. ElementNode has 
two sub classes :  RootNode and TextNode. The 
TextNode is a particular node, which does not look like 
a tag; this is only a string of characters.  
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XML
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+documentName : String

RootNode

Node

+name : String

ElementNode AttributeNode

+value : String

TextNode

+value : String
1

1
+document

rootNode_document

+rootNode

parentNode

0..*
+nodes

0..1

nodes_parentNode

1

1

+rootNode

rootNode_document

+document

+nodes

nodes_parentNode

parentNode

0..1
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Figure 12 - XML meta-model 

 

4.1.2 The XSLT meta-model 
The XSLT meta-model that we wrote to perform the 
transformation is an extension of the XML meta-model 
(cf. Figure 12). The extension consists of classes 
represented in grey on Figure 13. The main class is 
called XSLTNode inheriting from ElementNode. The 
XSLTNode class has sub classes representing XSLT 
elements:  xsl:apply-templates, xsl:template, xsl:if, 
xsl:value-of. To keep the explanation simple, we ignore 
several features like xsl:for-each, xsl:choose, xsl:sort, 
xsl:copy-of elements; thit is why they are neither in the 
meta-model nor in the transformation code. 
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+nodes
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Figure 13 - XSLT meta-model 

The name attributes of XSLT classes are set with the 
name of the tag corresponding to the owner class.  The 

XML attributes of XSLT tags, for example select in an 
xsl:value-of tag, are represented by UML class 
attributes having the same name and typed as String. 

4.1.3 The XQuery meta-model 
An XQueryProgram is composed of 
ExecutableExpression which can be FLWOR 
expressions, function calls (FunctionCall) and function 
declarations (FunctionDeclaration). The main class is 
FLWOR, it represents FLWOR expressions which are 
composed of For, Let, Where, Order by and Return 
statements.  For is composed of an XPath expression 
representing the value stored by the variable defined by 
the var attribute.  Let is also composed of an XPath 
expression representing the value stored by the variable 
defined by the var attribute.  Where is composed of a 
boolean XPath expression used to do a selection on the 
variables of the For statements.  OrderBy is composed 
of an XPath expression defining how to order the 
output.  Return is composed of expressions 
representing the output data.  Those expressions are 
ExecutableExpressions, XML Nodes, ReturnXPath 
expressions.  The Node class and its sub classes are 
copied from the XML meta-model.  We choose to use 
two different XPath classes, because the expressions 
used in the return part are between braces in the textual 
format of XQuery.  
 

XQuery

TextNode

ElementNode AttributeNode

+value : String

Node

+name : String
ExcutableExpression

FunctionDeclaration

+name : String

FunctionCall

+name : String

XQueryProgram

BooleanExp

Return

OrderBy

Where

Let

+var : String

For

+var : String

XPath

FLWOR

Expression

ReturnXPath

+value : String

0..1

+nodes

+parentNode

0..*

1..*
+expression

+functionDeclaration

+xqueryProgram

1..*
+expressions

+parameters

+functionCall

0..*

+orderBy

1..*
+priority

+orderBy

+where

+_let

+for

+rt

+expressions
1..*

expression
+for

+let

expression

+expression
+where

+return

1..*
+expression

+functionDeclaration

+expressions
1..*

+xqueryProgram

+expression
+where

0..*

+functionCall

+parameters

+orderBy

+priority
1..*

+for
expression

+let

expression

+orderBy

+where

+_let

+for

+return

0..1

+nodes

+parentNode

0..*

+expressions
1..*

+rt

 

Figure 14 - XQuery meta-model 
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4.2 XSLT2XQuery transformation 
In this sub section we define each step in the process of 
the XSLT2XQuery transformation. We therefore offer a 
process framework and the meta-model defining the 
representation of mappings with associated semantics.   

4.2.1 The transformation process 
This section summarizes the different steps of the 
transformation process illustrated in Figure 15 and 
Figure 16. The XSLT2XQuery transformation is carried 
out on instances of XSLT meta-model, and produces a 
corresponding model based on the XQuery meta-model 
(cf.  Figure 14).  

Before to tackle the XSLT2XQuery transformation in 
the MDA technological space, it is necessary to perform 
two first steps to get a usable XQuery model. 

The first step (1) consists in bringing back the context 
of work in the MDA technological space by importing an 
XSLT document to a model based on the XML meta-
model.  An ATL importer able to import XML document 
into the MDA TS is used to perform this import.  Indeed 
an XSLT is an XML document.  We then have a first 
form of the XSLT in the MDA TS. 

The second step (2) produces the wanted form of the 
XSLT document.  This form is a model based on the 
XSLT meta-model.  The second step is a transformation 
called XML2XSLT written in ATL. XML2XSLT 
consists of mapping each source model based on XML 
meta-model into a target model based on XSLT meta-
model (cf. Figure 15). Firstly, it starts by copying the 
XML elements, which are not XSLT tags.  Secondly, the 
transformation seeks and extracts the ElementNode 
instances, which correspond to the XSLT nodes.  Those 
XSLT elements will be transformed into XSLT instances 
(in grey on the meta-model of Figure 14. 

The third step (3) is the key transformation:  
XSLT2XQuery.  This transformation consists of the 
definition of relationship between expressions over the 
two models, such as respecting the semantics and the 
functionality of their formalisms.  XSLT2XQuery is 
detailed in the next subsection. 
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Figure 15 - Steps (1) and (2) of the transformation 
process
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Figure 16 - Steps (3) and (4) of the transformation 
process 

The last step (4) exports the model resulting from 
the XSLT2XQuery transformation into an XQuery 
document (in the XML TS). In our tests we used XSLT 
to perform the export.  This XSLT transforms the XMI 
serializations of the XQuery models into XQuery 
expressions.  Such transformations are really easy to 
write when the meta-model is a good representation of 
the grammar of the output. 

The ATL framework automatically generates the 
XMI serialization of each model present in the 
transformation process.  XMI is the format chosen to 
store models read and written by transformation.  This 
is why XSLT can be used to perform an export.  In fact 
the export to the XML TS is done at the end of each 
transformation by serializing models in XMI 
documents.  The last step of the XSLT2XQuery 
transformation process is then a transformation in the 
XML TS. 

In the ATL framework, it is now possible to write 
exporters to XML and textual technological spaces.  
Those exporters are particular ATL transformations 
composed of OCL expressions describing the way to 
get the representation of the exported model.  In this 
case the exportation is really placed in the MDA space:  
the XMI files, which store the exported models, are 
loaded in the ATL engine.  

 

4.2.2 The XSLT2XQuery transformation 
To have an easily understandable transformation we 
simplified a bit the input XSLT documents by adding 
constraints. 

The first one is that all the template tags must be 
direct children of the root node.  This constraint 
simplifies the behavior of templates. 

The second constraint is that the value of a select 
attribute of an apply-template must only be a tag name 
(it can not be an XPath expression). This constraint 
hides the main difference between a template and a 
function call.  An apply-templates tag applies all 
available templates to a set of elements and each 
template treats only the elements that it is dedicated to.  
Whereas a function call applies a function to a set of 
elements; the test of the type of the elements must be 
explicitly described in the function declaration.  The 
second constraint is useful to avoid describing this test.   
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The third constraint forces the XSLT programmer to 
write a template matching to ’/’. To write this template 
will force the XSLT programmer to explain how the 
transformation must start.  This information is necessary 
to the XQuery program, because XQuery is partly an 
imperative language:  it describes the order of the 
program execution. 

If we would not respect the previous constraints the 
transformation would also be writeable.  We would just 
have to do some more tests.  For example to remove the 
second constraint, we would have to generate XQuery 
code that defines which function to call.  The choice will 
be done in function of the node names. 

The transformation can be divided in three types of 
rules:   

• the rule used to create the XQuery expression 
container which is an XQueryProgram instance 
(the first rule),  

• the rules used to copy XML elements (the two 
last rules),  

• the rules used to transform xsl elements into 
XQuery expressions (the other rules).  

The source code of the transformation is in the appendix 
of this document. 

The first rule (cf.  lines 4 to 30) creates five kinds of 
elements and one instance for each kind:  
XQueryProgram, FLWOR, For, XPath and Return. Each 
of those instances is described by one output pattern 
(respectively at lines: 7, 10, 16, 21, 25). The first output 
pattern creates only an XQueryProgram instance.  The 
second describes the FLWOR instance.  This output 
pattern owns three ATL bindings.  The first one explains 
that the FLWOR instance is an expression of the 
previously created XQueryProgram. The second and 
third output pattern specifies that the for property and the 
return property will be set with the instances generated 
by the output pattern creating respectively For and 
Return instances.  As you can see on line 18, the For has 
its expression property connected to an XPath instance.  
This XPath expression defines the sub nodes of the root 
one of the transformed XML document.  This expression 
is used to specify that the transformation begin at the root 
of the documents.  This start point is the equivalent of the 
template matching to ’/’. The Return output pattern owns 
a binding describing that the expression property 
correspond to the output elements created by the 
transformation of sub nodes of the XSLTRootNode. (The 
_XSLT variable represents the XSLTRootNode.) 

The following parts describe the XQuery equivalent 
expression of each xsl tag.  The two first rules (cf.  lines 
32 to 76) are the more important.  They describe how 
template mechanisms can be converted into XQuery 
expressions.  To be brief, we can just say that 
xsl:template tags are converted into function declarations 
and xsl:apply-templates tags into function calls. 

We transform xsl:template tags into function 
declarations because a template is a set of ordered 

instructions called from different parts of the program.  
This definition is close to the definition of a function.  
To imitate the mechanism of the template, the created 
functions have a parameter, which describes the set of 
elements on which the template performs. 

The xsl: apply-templates tags are converted into 
function calls.  An xsl: apply-templates owns an 
attribute describing the set of the elements on which the 
template will apply.  This information is stored in the 
function parameter. 

The rule starting at the line 32 describes the 
elements, which are generated by the xsl:template 
transformation.  The main elements are instances of 
FunctionDeclaration. The function name is the match 
attribute value of the xsl:template prefixed with fct. 
The expression property of FunctionDeclaration 
instance refers to a FLWOR expression described in the 
second output pattern. At the line 39, the right part of 
the binding is a sequence of FLWOR elements from the 
_Template rule. The specification of the sequence is 
necessary because _Template represent an only element 
and the meta-model specify that the expression 
property is a set of elements.  The lines 40 and 43 
describe the fact that the FunctionDeclaration 
instances are owned by the instance created by the 
transformation of XSLTRootNode instance.  The right 
part of the binding describes XSLTRootNode instance 
with an OCL expression getting the first element of the 
set of all XSLTRootNode instances.  We choose the first 
element of the set because in an XSLT document there 
is only one root node. 

The rule on lines 64 to 71 describes the creation of a 
function call:  the name of the function is the value of 
the select attribute (of the apply-templates node) 
prefixed with fct (thanks to the second constraint 
previously presented at the beginning of the sub 
section) and the parameters property is bind to an 
XPath instance, which is set with the value of the select 
attribute prefixed with $var/. This is necessary 
because the current node is not implicit in XQuery that 
is why we need to use a variable.  The $var variable is 
used in every FLWOR expression to simulate the 
current node.  It and its value is defined in the For (or 
in the Let) statement of each FLWOR expression. 

The rule on lines 78 to 108 describes the 
transformation of xsl:if tags into FLWOR expressions.  
The where statement is used to do the if work:  the test 
expression of the xsl:if is copied in the XPath 
expression connected to the Where instance.  The 
$var/ prefix is added to the XPath expression to 
simulate the current node as explained previously.  The 
connection to the parent elements is done in parent 
creation rule. 

The rule starting at line 110 describes the 
transformation of xsl:value-of tags into ReturnXPath 
expressions.  This rule consists of a copy of string 
expressions and an addition of the $var/ prefix.  This 
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is possible because navigation languages of the input 
transformation and of the output transformation are the 
same (XPath). If navigation languages had been different 
the transformation would be more complicated, because 
we would have to treat navigation expressions as 
compositions of meta-model instances and not as strings. 

The two last rules (cf. line 118 to the end) describe the 
transformation of XML elements from the XSLT 
documents.  Those elements are just copied by the first 
rule while the second one copies their attributes.  The 
discriminators of those rules test if the nodes are xsl 
elements not to copy them.  The helper called 
isNotPredefined does this work. 

4.2.3 An illustrative example 
Figure 17 and Figure 18 present a test of the 
transformation.  On Figure 17 we can see the input 
XSLT which extracts the employees having a salary 
greater than 2000$ from an XML document storing 
employees data.  Figure 18 presents the output of the 
transformation, which has been run and does the same 
work than the XSLT with Qexo [20] implementation of 
XQuery. 
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Figure 17 - Test input :  an XSLT file 
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Figure 18 - Test output an XQuery file 

5. Conclusion 
Why inventing new transformation languages since we 
already have Prolog or XSLT or even Java, Perl, and 
Python that could be used for this purpose ? We hope 
the material presented in this papermay partially hepl 
answer some of these questions. 

As announced at the beginning of this paper, the 
application presented here is atypical of the model 
engineering technology because not strictly situated 
inside the MDA TS. This has been done on purpose 
because we believe the MDA TS is not an island and 
should be considered in relation to other TSs.  Since the 
XSLT processing of XMI serialized model had already 
been tried, we have tackled here the reverse problem.  
This shows that bridges between various TSs are not 
symmetrical, but this does not come as a surprise. 

Working at the boundary between two TSs is 
important because we believe a transformation system 
must be wider than a simple language and 
corresponding engine.  It should encompass a large 
library of transformation components and also a set of 
import-export facilities from/to other TSs. 

We have learnt a lot during this work. First, since it 
was a difficult and unconventional problem; it obliged 
us to push the ATL language to some of its limits and 
several aspects were improved. ATL is still evolving 
because one of our main objectives is to make it 
compliant with the result of the MOF/QVT 
convergence recommendation when it is ready. 

But we also hope to add many original features to 
the ATL transformation system. We already knew that 
being able to deal with a large hierarchical library of 
transformation components is a must and that 
corresponding browsing features should be available in 
any practical transformation framework.  We presently 
know that we also need to provide a corresponding 
library of import-export component between the MDA 
and other TSs. Furthermore we understand that these 
import-export components should absolutely be 
specializable. An XML import-export component will 
serve to deal with any other XML schemas as has been 
done here for XSLT and XQuery. Similarly other 
generic import-export components are being built, for 
example another family based on EBNF to deal with 
the TS of conventional programming languages. 

One of the roles that should be played by any QVT-
compliant transformation language is to deal with 
transformation legacy i.e. working transformations 
expressed in other formalisms. The present work 
illustrates one possibility to deal with this. 

  It is of paramount importance to compare and 
classify the different transformation systems that are 
being proposed for various emerging technologies. The 
features, possibilities, characteristics, scope of 
applicability, scalability, etc. of these systems should 
be put in correspondence and seriously evaluated 
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(composability, extensibility, modularity mechanisms, 
organization structure, tracing facilities, directionality, 
etc.). An interesting initial evaluation is provided in [4]. 
Unfortunately this does not take into account proposals 
that are outside the strict MDA QVT proposals.  XML-
based, Java-based, Prolog-based, graph-transformation 
systems, and many others should be compared because 
they may often be used for the same tasks. This paper has 
shown how important the notion of technological space 
is, if we want to avoid sterile discussions. Furthermore 
we have pushed the idea to its application, by building a 
new bridge between the MDA and the XML TS, in the 
reverse direction of the old bridge presented in [17] that 
was operating in the opposite direction. We are presently 
convinced that the notion of TS is not only an interesting 
discussion idea, but an operational concept very useful to 
the engineer that has a problem to solve and that does not 
know beforehand which technology is the most suitable 
to solve it.  

We are also confident in the suitability of ATL for 
many tasks, including non-conventional ones. As part of 
the ongoing collaboration between ATLAS and TNI-
Valiosys, similar experiment are going to be conducted, 
for example in domain of programming language (EBNF 
import-export components). 

During this presentation we pointed out some open 
questions about transformation frameworks. Among 
these, the traceability problem should have a good 
position in the research agenda. Many other subjects 
should also be mentioned as areas of ongoing research. 
The possible expression of model weaving operations 
(i.e. binding a business model to a platform definition 
model in order to get a platform specific model) as a 
sequence of transformation is an interesting and difficult 
problem. More generally we are studying the potential 
applications of defining higher order transformation in 
ATL. Higher order transformations are transformations 
taking other transformations taking other transformation 
as input and/or producing other transformation as output. 
Even if these possibilities are present in other TSs (with 
XSLT for example), their particular interest seems yet 
underestimated. 
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