First experiments with the ATL model transformation language:
Transforming XSLT into XQuery'

Jean Bézivin(l), Grégoire Dupé(l), Frédéric Jouault'” (2), Gilles Pitette(z), Jamal Eddine Rougui(l)

() Atlas Group, INRIA and IRIN
University of Nantes,
2, rue de la Houssiniere - BP 92208
44322 Nantes Cedex 3, France

@ TNI-Valiosys
120, rue René Descartes
Technopdle Brest Iroise - BP 70801
29608 Brest Cedex, France

Abstract

ATL (Atlas Transformation Language) has been defined to perform general transformations within the MDA framework
(Model Driven Architecture) recently proposed by the OMG. We are currently learning from the first applications
developed with this language. The example used here is a transformation from XSLT to XQuery. Since these are two
standard notations that don’t pertain to the MDA space, we first need to provide some justification about this work. The
global organization of technological spaces presented at the beginning of the paper is intended to answer this first question.
Furthermore we propose the original characterization of a technological space as a framework based on a given unique
meta-model. After having briefly presented the ATL framework, we describe the XSLT2XQuery transformation. We may
then draw several conclusions from this experiment, suggesting possible improvements to general model transformation
frameworks. ATL is still evolving since it is supposed to match the forthcoming QVT/RFP recommendation when it is
ready. As a consequence, the concrete expression of the transformation presented in this paper may change, but the general
ideas should remain stable.

Keywords
MDA; XML; Model Transformation; MOF/QVT; Technological Spaces; XQuery; XSLT;

Xquery [25]. Many characteristics of this problem are
challenging and provide a significant test to evaluate
the suitability and adaptability of ATL.

The natural application domain of ATL is to express

1. Introduction
Within the OMG MDA initiative, a request of proposal

has recently been issued on model transformation
support. The MOF/QVT RFP [13] aims at defining a
domain-specific language (or a family of such languages)
for querying, viewing and transforming models. As part
of this effort, the ATLAS group at the University of
Nantes and the TNI-Valiosys Company are proposing
ATL (Atlas Transformation Language) [15]. The
TNI/Valiosys Company will deliver an industrial-
strength version of ATL while ATLAS is working on a
free software release of the current transformation engine
and of a library of transformation components. Several
model transformation applications are currently being
developed in this language. This paper presents one of
these initial applications, not the most typical but with
interesting properties: transforming XSLT [24] into

MDA-style model transformations, based on explicit
meta-model specifications [5]. For example we can
transform a UML model into another UML model
where all the public class attributes would be privatized
and corresponding accessors added. Another example
would be to transform a UML 1.5 model into an EJB
1.2 implementation. = This area of research and
development is currently very active since we can now
envision large libraries of adaptable and composable
transformation components that could be acquired or
developed by IT departments of various companies in
order to speed up and to improve the quality of their
software development and maintenance process. The
main ideas behind this evolution are the consideration
of models as first class entities and of transformations

" This work was partially supported by the MOTOR /CARROLL common project between INRIA, CEA and THALES.

as models. One of the major goals of the MDA initiative
[21] [3] is to apply these model transformation
frameworks to the automatic generation of platform
specific models (PSMs) from the pure business
expression of platform independent models (PIMs).
Proceeding in this way may give some hope to be able to
cope with the rapidly changing technological platforms
(CORBA, XML-SOAP, Java-EJB-J2EE, ECLIPSE, C#-
DotNet-Phoenix, etc.). The corresponding software
development and maintenance cycle would then be
viewed as a chain of successive transformations.

Many efforts are presently addressing the problem of
reusability of transformation components, since this is at
the hearth of the MDA proposal. We participate in this
general effort by building up our own library of ATL
transformation components. The motivating example we
have chosen to discuss here is however less
conventional. Instead of using classical meta-models
like UML, SPEM [16], CWM, Java, etc., we are going to
look outside the strict boundaries of MDA model
engineering to experiment on how ATL could be applied
to outside technological spaces as well. After having
introduced this notion of technological space, sometimes
abbreviated TS in this paper, we shall present the target
problem situated inside the XML document space:
transforming XSLT documents into XQuery documents.
Of course we know that this could be done inside the
XML space, by applying either XSLT or XQuery. If we
import the problem into the MDA technological space,
this is mainly to compare both approaches. It is also to
tackle a problem more difficult than simple UML model
refactoring and to assess the qualities of our ATL
language. Since our ATL engine has been working for
some time now, this kind of expreriment allows us to
gain practical exprerience and is much helpful to
evolving the language and its environment

XML TS I MDA Ts I

XSLT/XQuery ATL
transformation transformation

@
XQuery
document

Figure 1 - Multiple ways to transform models

So the problem we are tackling is illustrated in Figure
1. We want to transform an XSLT document into a
corresponding XQuery document. This should be a
semantic-preserving transformation, since the XQuery

program should perform similarly to the XSLT
program on similar XML input files. If we were to
solve completely this problem inside the XML
technological space, we would probably use an XSLT
transformation as suggested in the left part of Figure 1.
This is not our intention here. What we propose to do
is first to import the problem (i.e. the XSLT document)
from the XML space to the MDA space, i.e. making
this a true MDA model (1). Then we apply an ATL
program to transform this model into another model
corresponding to an XQuery document (2). Finally we
export back the result from the MDA space to the XML
space (3). We hope to learn several lessons from this
work, possibly by defining a general approach that
could be applied in other contexts as well.

After procedural refinement in the 70's and object
composition in the 90's, model transformation seems
now to follow as the dominant paradigm in software
engineering. There are a lot of different approaches to
model transformation and several classifications and
comparisons are currently being offered [4]. The most
important difficulty in these classifications is giving a
precise scope to the domain of model transformation. Is
XSLT a model transformation language? This brings us
to answer the central question of what exactly is a
model. One of the most general definitions has been
given in [19]: "A model is a formal description of a
complex application artifact, such as a database
schema, an application interface, a UML model, an
ontology a message format". This is a good starting
point because it considers for example an XML
document to be a model. It does not help much
however to define a unified model transformation
language or a family of such languages. Since the
problem of interoperability between different
transformation languages is fundamental, we need a
more precise definition than the previous one. The
solution we propose here is to consider that a UML
model, an XML document or a Java program are all
models, but models pertaining to different TSs. A UML
model for example pertains to the MDA TS as
standardized by OMG. Proceeding in this ways has
several advantages. For example it allows considering
uniformly what is usually called model-to-model,
model to code or code-to-code transformations. If we
manage to give a sufficiently precise and operational
definition of a TS, it will then be possible to state
precisely what is an internal transformation inside a
given TS and what is an import-export conversion
between two different TSs.

The presentation given in section 2 has the purpose of
illustrating the practical importance of a precise
definition of TSs. One of the original views offered is
that each TS is built around the implicit or explicit
assumption of a unique given meta-meta-model.

This paper expresses a view rather opposite to the one
proposed in [17]. At that time, we explored the

possibility of exporting the model transformation
problem from the MDA TS to the XML TS because there
were no available transformation engines inside the
MDA TS. Now, following the OMG MOF/QVT RFP,
there are already some existing engines like the ATL one
that are beginning to be available. As a consequence we
may now seriously explore below the alternative
approach of exporting a XML document problem for
solution into the MDA technological space.

This paper is organized as follows. The notion of
technological space is presented in Section 2. The ATL
language is described in section 3. The motivating
example of transforming an XSLT document into an
XQuery document is discussed in detail in section 4.
Section 5 gives the conclusions of this experiment.

2. What is a technological space?

2.1 The notion of technological space

We employ the concept of Technological Space [8] as
the central concept in our analysis and comparison. A
technological space is a working context with a set of
associated concepts, body of knowledge, tools, required
skills, and various other possibilities. It is composed of a
representation system and a set of operators to access,
update and process the information expressed in this
common representation system. It is often associated to a
given user community with shared know-how,
educational support, common literature and even
workshop and conference meetings. It is at the same
time a zone of established expertise and ongoing research
and a repository for abstract and concrete resources.
Although it is difficult to give a precise definition of a
Technological Space, some of them can be easily
identified, for example: programming languages
concrete and abstract syntax (Syntax TS), Ontology
engineering (Ontology TS), XML-based languages and
tools (XML TS), Data Base Management Systems
(DBMS TS), Model-Driven Architecture (MDA TS) as
defined by the OMG as a replacement of the previous
Object Management Architecture (OMA) framework.

Figure 2 provides a global view of these five TSs. It
shows that each space is defined according to a couple of
basic concepts: Program/Grammar for the Syntax TS,
Document/Schema for the XML TS, Model/Meta-Model
for the MDA TS, Ontology/Top-Level Ontology for the
Ontology TS and Data/Schema for the DBMS TS.

Each of the technologies presented in Figure 2 has
basic properties and features, strong and weak points. To
name some, the Syntax TS deals with executable
systems; the Ontology engineering TS has some very
precise definition tools like conceptual graphs and
description logics, the MDA TS has received industrial
agreement and backup on its Unified Modeling
Language (UML) and Meta Object Facility (MOF)

standard recommendations; the DBMS TS has a long
record of dealing with huge volumes of structured data;
the XML TS has also wide industrial acceptance in the
field of semi-structured data representation; the Syntax
TS is a very rich and stable technology that has been
maturing for more than fifty years with formal tools
(e.g. context-free or attribute grammars) and mapping
these onto executable machines; the XML TS has some
interesting and widely available tools such as XSLT
transformation engines; the MDA TS has made
available many industrial CASE tools like Rational
ROSE, Argo UML, etc. supporting model creation and
browsing.

Or DTD

XML

<D

Top-level

Ontolo
Ontology Cld

engineering

Figure 2 - Some technological spaces with some
relations among them

Another idea, illustrated by Figure 2 is that no TS is
an island. There are bridges among the spaces and
these bridges also have particular properties. In Figure
2 we do not represent all the bridges between the
various TSs and the figure does not suggest any
superiority for any one of them.

MDA TS

/R F
Syntax TS

Java D C#
Code Code

Figure 3 - Code migration

Bridges allow import-export of artifacts from one
space to another. Some bridges may be bi-directional
and some may be one-way bridges. Bridges are

especially useful when a given operation may be
performed more easily in one space and the result may
then be imported into other space. For such an operation,
software engineers need to compare the facility of
achieving it in one space compared to the other one and
also to evaluate the import/export facilities between the
spaces. For illustration purposes, we take an example
mentioned in [18] and illustrated in Figure 3. Recently an
approach to migrate Java applications to C# applications
was proposed as a set of tools by Microsoft (direct D
transformation). The corresponding JUMP framework
(Java User Migration Path) is entirely situated inside the
Syntax TS. Alternatively, it is also possible to perform a
reverse engineering operation from Java to a UML-like
model (R operation), followed by a forward engineering
operation to generate the C# program (F operation).
According to the details of this operation (the precise
pivot meta-model used), the direct D operation will be
different from the combined R+F operation.

We have mentioned some TSs in the previous
descriptions. The number of these spaces is obviously
much more important and their structure and mutual
relations are quite complex. The space of abstract and
concrete syntax covers for example executable
programming languages. As we know, there are many
such different languages (imperative, declarative,
procedural, functional, object-oriented, etc.). Each has its
own properties that may accordingly be defined as sub-
spaces.

Table 1- Strong and weak points of some TSs

XML MDA Syntax TS Ontologies
Executability Poor Poor Excellent Poor
Aspects Good Excellent Poor Fair
Formalization Poor Poor Excellent Fair
Specialization Fair Good Poor Fair
Modularity Good Good Good Poor

Traceability Good Fair Poor Excellent
Transformability | Excellent Fair Fair Fair

Table 1 summarizes how some technologies do better
on some problems than others. Once again, this is only
for illustration of the proposed approach. Stating that the
XML technology performs very efficiently on
transformation (with the help of XSLT) and that
programming language systems have much less to offer
is a very abrupt simplification that should be completed.

import java.applet.*:
import java.awt.*;

public class FirstApplet extends Applet {
public void paint(Graphics g) { Java

) g.drawString(“FirstApplet”, 25, 50); sou;ce
code

ONCUAWN =

}

1 <2xml version="1.0" encoding="UTF-8"2>

2 <IDOCTYPE java-source-program SYSTEM "java-ml.dtd">
4 <java-source-program name="FirstApplet.java">

5 <import module="java.applet.*"/>

6 <import module="java.awt.*"/>

7
8

<class name="FirstApplet" visibility="public">
<superclass class="Applet"/> JavaML
9 <method name="paint" visibility="public" id="meth-15"> document
10 <type name="void" primitive="true"/>
11 <formal-arguments>
12 <formal-argument name="g" id="frmarg-13">
13 <type name="Graphics"/></formal-argument>

14 </formal-arguments> ...

Figure 4 - Java standard source code and JavaML
representation

In order to be more precise about the distinction
between TSs, let us look at another example. The same
Java program may be represented in three different
technological spaces: programming language syntax,
XML document and MDA. The former two are
external models and the latest is internal from the point
of view of the MDA technological space. This is
illustrated in Figure 4 and Figure 6. The standard
source text of a given program, the XML document of
the same program expressed in the JavaML [2] DTD
for example and finally the model of the same Java
program expressed in a given Java meta-model may be
converted one from the other by bridges between these
technological spaces. However, inside each
technological space, there are tools to handle the
specific representation. It would be a pity to rebuild all
these tools inside the MDA space if they perform well
in other spaces. It seems much better to propose well-
engineered bridges between the different spaces.

g

+extendls|

I
Y
I
I
|
1
|
|
i
|
|
1

Figure 5 - Java meta-model and model
representation

Java Java JavaML
Grammar Meta-model DTD
4 A
Java Java JavaML
Program Model Document
Program TS MDA TS XML TS

Figure 6 - Representing the same data in three
different technological spaces

2.2 On the pertinence of TSs

The notion of TS allows us to deal more efficiently with
the ever-increasing complexity of evolving technologies.
There is no uniformly superior technology and each one
has its strong and weak points. The "my technology is
superior to yours" attitude is generally counter-
productive.

Our privileged point of view is the MDA TS, where
the basic concepts are MOF-compliant models and meta-
models. The present work is however situated at the
boundary between the MDA TS and the XML TS
(documents and schemas). We wish to solve a problem
of the XML TS inside the MDA TS. As previously
mentioned reverse operation was evaluated in [17]. A
MDA model, serialized in XMI [14], is exported from
the MDA TS to the XML TS. Then this model is applied
a XSLT transformation and the result is finally imported
back as a model. XMI should thus be considered as part
of the bridge between the MDA TS and the XML TS.

A careful consideration of various TSs shows that
each one is based on the giving of an implicit or explicit
meta-meta-model. The MDA TS, as defined by OMG, is
based or the MOF which is aligned to the UML
infrastructure. There are other different choices in the
model management field like the sNets proposal [10] or
the Vanilla meta-meta-model proposed in [19]. MOF,
sNets and Vanilla are three examples of meta-meta-
models that define similar TSs. They are all based on
directed labeled graphs, but differently constrained. The
MOF additionally defines a navigation and assertion
language for these graphs called OCL. If we talk about
trees and not graphs, the situation is similar. There are
two well-known meta-meta-models constraining two
families of trees. The first one is XML as presented later
in Figure 12. XML trees are special trees” (well-formed
i.e. respecting the meta-meta-model sketched in Figure
12). The second one is EBNF, which allows dealing

? The description of the XML presented in Figure 12 is
only minimal. We have defined an extended OCL-
decorated XML meta-model. This is outside the scope of
this paper.

with another family of trees (syntactical trees) for
conventional programming languages. Of course in
some case the programming language may have a
special form allowing defining a specific meta-meta-
model (e. g; Lisp, Prolog, etc.). We see then that each
TS is rooted on a specific meta-meta-model.

As a final remark we should note how active is the
field of transformation in the various TS. This paper
deals with transformations in the MDA TS
(MOF/QVT). The application field used here mentions
two important transformation formalisms of the XML
space (XSLT and XQuery), but there are many other
concurrent approaches being currently defined for
XML. Finally, in the programming language TS (e.g.
Java), there is currently a very important activity going
on on the same topic, for example: [6], [7], [22], [1],
and many more.

3. Presentation of the ATL
language

ATL is a model transformation language for the MDA
corresponding to the ongoing QVT RFP ([13],[9], etc.).
Its abstract syntax is specified as a MOF meta-model
and a corresponding textual concrete syntax has been
defined. An additional graphical concrete syntax also
exists, which offers a way to represent a partial view of
ATL declarative transformation rules.

This section presents the current version of ATL, which
is still evovlving towards OMG QVT compliance and
increased functionnalities.

After a brief overview of how queries, views and
transformations are handled in ATL, its abstract syntax
will be described. Textual and graphical concrete
syntaxes will then be presented and some properties of
the language will be analyzed.

3.1 Basic description of ATL

3.1.1 Queries

In ATL a query is an OCL expression, which can return
primitive values (Boolean, String, Integer...), model
elements, collections or tuples, or any combination of
these (collections of tuples...).

The query can navigate across model elements and also
call query operations on them. These operations can be
defined either in the meta-model or along with the
query. Adding such operations to model elements
(using OCL constraints with the <<definition>>
stereotype, as defined in [11]), to be used by a query,
offers interesting possibilities: recursion can be used,
model visitors can be written...

3.1.2 Views

Views are a special case of transformations. However,
some properties of a transformation language can help to
make views more useful:

e Support for incremental transformations makes
it possible to update a view from its source
without executing the whole transformation
again.

e Bidirectionality can be wused to define
changeable views, which propagate their
modifications to their source models.

The present version of ATL supports neither of these
functionalities. However, we think a similar result
(bidirectional updates) could be achieved using
traceability information generated by the execution
engine (see later).

3.1.3 Transformations

An ATL transformation model can transform a set of
source models to a set of target models. The meta-models
of every model (source or target) must be specified and
be available for the transformation to be executed. ATL
is actually able to handle any model defined using a
MOF meta-model®. This includes meta-models and the
meta-meta-model, due to the reflexivity of the latter. It is
for instance possible to transform a UML model into a
MOF meta-model, or to query all the constraints given in
the MOF meta-meta-model. Navigation over models is
specified using OCL.

3.2 Detailed description of abstract syntax

3.2.1 Navigation

Only navigation over fully initialized elements is
allowed. A target element can only be definitively
initialized at the end of the execution of the
transformation. Therefore, navigation in ATL can only
be done over source elements coming from source
models and source or target meta-models.

If navigation over the target elements of a transformation
model is necessary, it must be done in another
transformation applied to the output of the first one.

3.2.2 Functions and operations

In OCL, operations can be defined on model elements.
ATL reuses this possibility and allows a modeller to
define operations on elements of source meta-models and
on the transformation model itself.

3.2.3 Transformation rules
Different kinds of rules exist in ATL, based on the way

® This includes meta-models and the meta-meta-model,
due to the reflexivity of the latter.

they are called and on how they specify their result.
The part of the ATL meta-model defining rules is given
in Figure 7.

Operation Rule

+name : String

CalledRule

MatchedRule

0.1 pinPattern 0..1 pactionBlock 0..1 [outPattern

| InPattern | | ActionBlock | | QutPattern

Figure 7 - Rules in ATL

A rule is either explicitly called using its name and
with parameters (a called rule), or executed as a result
of the recognition of an inPattern in the source models
(a matched rule). The result of the execution of a rule
can either be declared wusing an outPattern,
implemented in an imperative section, or both.

A rule with an inPattern and an outPattern is called a
declarative rule (whithout any imperative section, it is
a fully declarative rule). A rule with a name, formal
parameters, an imperative section and without any
outPattern is called a procedure. Other combinations
are simply called hybrid rules.

This makes ATL a hybrid language. In [4], such a
language is mainly described as using a declarative
approach to select rules, which imperatively specify
how the work is to be done. ATL has that kind of rules,
but fully declarative or fully imperative rules can also
be defined.

OcIModelElement

i
" *

PatternElement

(from OCL) +type +name : String

InPatternElement +mapsTol oytpatternElement

Figure 8 - Pattern elements

3.2.3.1 Source pattern

An ATL matched rule specifies a source pattern (or
inPattern, or input pattern) as a set of types coming
from source meta-models, associated to variable names
and optionally filtered using an OCL Boolean
expression. This filter, accesses the in elements through
their variable names and returns true when a particular
set is accepted by the rule. A source pattern is therefore
a set of nodes from the source models, which have a
specific relation, checked by the filter. A corresponding
view of the ATL meta-model is given at Figure 9,
pattern elements being defined at Figure 8.

OclExpression 0..1 InPattern

(from OCL) +filter

+value
+elements| 1..*

InPatternElement |

0..1

|
|DerivedInPatternEIement |

Figure 9 - Source patterns

A special case arises when all the elements recognized
by the inPattern of a rule are in the same model. As a
matter of fact, the subgraph formed by these elements
can be and is often connected, which means that any
information retrieved from one of the source elements by
navigation could be obtained by navigating from any
other. It seems to mean that in these cases, the additional
elements are not necessary and that only one could be
kept. However, several points must be considered :

e Some navigation expressions might be expressed
more concisely from one node than from the others.

e Since the transformation engine must analyze every
possible pattern and apply the discriminator on it,
the computational gain resulting from the shortening
of some navigation expressions might be lost.

e [f a rule creates several elements from a single one,
every generated element will be associated to it. It is
sometimes necessary, however, that a part of the
target elements are associated to other specific
source elements.

A solution provided in ATL is the possibility to declare
source elements as derived from others. In this way, if
two elements are connected, one of them is computed
from the other by navigation but can still be associated to
a specific target element.

3.2.3.2 Target pattern

An target pattern (or outPattern, or output pattern), as
specified on Figure 10, is a set of types coming from
target meta-models associated to variable names and
bindings. When the rule containing the target pattern is
executed (either for a called or for a matched rule), the
target elements of the specified types are created. A
binding specifies the value used to initialize a specified
property of an instance. A target pattern is consequently
a set of nodes, which can be linked together by the
bindings.

OutPattern OclExpression

(from OCL)
/|

*
+elements| 1.. +value

OutPatternElement

+bindings| 0..”

Binding

0..1

+propertyName : String

Figure 10 - Target patterns

Edges of target models, viewed as graphs, are created
by bindings and can be set in a rule or between rules,
using the target-from-source resolution algorithm
described later as part of execution semantics in 3.2.4.

3.2.3.3 Imperative block

The imperative block of an ATL rule specifies a
sequence of instructions that are to be executed after
the application of the outPattern (if present). The
language used is designed to be compatible, through an
appropriate transformation, with Action Semantics.

As the latter is already standardized and there is a
direct mapping between ATL abstract and concrete
syntaxes for imperative instructions, these are not
described here but only in the presentation of the
concrete syntax in 3.5.2.

3.2.3.4 Rule inheritance

A rule can extend another one. The new rule can
specify additional elements or restrictions on its source
pattern. A restriction can be in the form of a new filter
(which will be logically anded with the old one) or of
the redefinition of a source element with a type
extending the old one. Additional target elements or
bindings can also be specified.

3.2.3.5 Abstract rules

An abstract rule is a rule that cannot be executed as
such but must be extended to be useful.

3.2.4 Execution semantics

Executing an ATL transformation model requires
several steps. If the model is given in textual format, it
is first parsed and transformed to a model defined using
the ATL meta-model. This model is then statically
checked for semantic errors against the ATL meta-
model and source and target meta-models. The next
step can either be an interpretation or a compilation
followed by an execution. In both cases, the application
of an ATL transformation follows the semantics
described in this section.

If there is a called rule marked as entrypoint (only one is
allowed) it is executed first. This rule can call any
number of called rules until it reaches its end.

Then, the matched rules are executed. In a first time, the
output elements are instantiated. For each rule, every
combination of elements matching the types of its
inPattern is tried and checked against its filter. It the
latter returns true, a pattern has just been recognized
and the rule is matched for a specific set of elements.
Each time a declarative rule is matched, its target
elements are instantiated. This is simply done by
instantiating each element of its outPattern. A run-time
link between the rule, the recognized and newly
generated elements is created. This link associates one
output element to each input element, which becomes the
default element for implicit target-from-source
resolution. A given source element cannot participate to
more than one inPattern, otherwise a runtime error
occurs. As a matter of fact, this cannot be statically
detected in the general case; some filters would have to
be checked for not being simultaneously t rue.

In a second time, the bindings are applied to initialize

every output element. Depending on the type and

multiplicity of the property to be set, different actions
can be done:

e If the type is primitive (String, Integer, Boolean,
Double) and the multiplicity has an upper bound of
1, the result of the evaluation of the right part is
simply used to set the property (which is an
Attribute).

e If the type is complex (a Class of the meta-model)
and the multiplicity’s upper bound equals 1, the
right operand of the binding must evaluate to a
model element of one of the source models
(navigation over target elements being prohibited).
The value, which will be used to set the property,
cannot be this model element, which is not in the
same model as the property’s owner. However, at
this point, a link might exist between this source
element and some target elements, if it belongs to a
matched subgraph of a rule (the same or another). If
it does not, there is an execution error because the
binding cannot properly initialize the property. If it
does, however, the default element, associated to
this source element by the run-time link, is used to
set the property. If another element is explicitly
specified, it is used in place of the default one. This
is the target-from-source resolution algorithm.

e If the upper bound of the multiplicity is greater than
1, there are two possibilities:

o The right operand of the binding evaluates to a
single element (primitive or complex), which
type matches the type of the property
(otherwise, it would have been statically

plotted as a semantic error). This element is
added to the collection of elements of the
property.

o The right operand evaluates to an OCL
Collection of elements (primitive or
complex), which types match the type of the
property. The size must match the
multiplicity, or there is an execution warning
(an imperative section can correct this).
Every element is added to the collection of
elements of the property.

In a third time, the imperative blocks of the matched
rules are executed.

Eventually and provided it exists, the called rule
marked as endpoint is executed.

Note: called rule containing an outPattern are not
executed as matched rules. The target elements are
simply created and initialized before the execution of
the imperative block, but are not automatically linked
to any source element.

3.3 Reflection

During the execution of a transformation, source
models, source and target meta-models are navigable.
The ATL meta-model and the presently executed
transformation model itself are also navigable.

Rules can be explored from their names and the whole
model can be accessed by its name.

3.4 Traceability in ATL

Traceability is achieved in ATL by having the
transformation engine storing runtime information on
the transformation in a model based on a specific meta-
model.

Rather than defining such a meta-model and fixing
traceability model generation rules, we think it would
be preferable to define a customizable mechanism
using reflection.

The specification of this mechanism is out of the scope
of this paper. It will be defined in an ulterior document.

3.5 Textual concrete syntax

3.5.1 Declarative constructions

A concrete syntax has been defined and mapped to the
ATL meta-model in order to make it possible to
textually express transformation models.

Type names are prefixed by their meta-model names to
prevent name collision in case of multiple source meta-
models. For instance, with UML as a source meta-
model, the following source pattern applies the rule to
each pair composed of a Class and one of its Attribute:

from
c : UML!Class,
a : UML!Attribute
(a.owner = c)

Two nodes, a Class and one of its Attribute, are
recognized by this pattern. A performance issue appears
here: this inPattern forces the execution engine to check
every pair of class and attribute against the filter.
Declaring the class as derived would solve this problem:

from
a : UML!Attribute,
derived ¢ : UML!Class = a.owner

Note that deriving the attribute from the class would not
be equivalent.

An outPattern is defined in a similar way. The operator
used in bindings is <—. Here is how the instantiation of
an UML!Class and of one of its UML!Attribute is
declared:

to
c : UML!Class,

a : UML!Attribute (owner <- c)

Declarative rules are defined by associating a target
pattern to a source pattern. For instance, here is how a
simple mapping from UML to a relational database meta-
model (RDBMS) could be defined:

rule Class2Table {
from class : UML!Class
to
table : RDBMS!Table
mapsTo class (
name <- c.name
),
pk : SimpleRDBMS!Key (
name <- class.name,
owner <- class,
column <-
class.attribute—->select (e]|
e.kind = 'primary'

)
}

rule Attribute2Column {
from attr : UML!Attribute
to
col : RDBMS!Column mapsTo attr (

name <- a.name,
owner <-— a.ownher

}

The source element to which a target element is
(optionally) associated is specified using the mapsTo
keyword.

In the case of a target-from-source resolution, which
does not use the default target for a specific source, the
target element variable name of the rule must be given.
For instance:

rule Association2ForeignKey {
from asso : UML!Association
to
fk : RDBMS!ForeignKey
mapsTo asso (
refersTo <-
[Class2Table.pk] ia.destination,
owner <- ila.source
)
}

A runtime error occurs when a source element has not
been transformed by the given rule.

A problem arises when several rules can have
generated the specific target element from the source
one. For instance, if the source element is a Classifier,
the target could have been created either by a
Class2Table or by an Inteface2Table rule. In this case,
both rules must inherit from a single rule declaring an
abstract output element.

3.5.2 Imperative instructions

The optional imperative block of a rule is composed of
a sequence of instructions, which are to be executed in
the given order. Several kinds of instructions exist and
are presented thereafter.

3.5.2.1 Expressions

Expressions are written in OCL and can be used as
instructions. This would be useless in case of simple
query expressions, but the call to non-query operations,
such as an imperative rule, is allowed.

3.5.2.2 Variables

Variable declaration use an adapted OCL syntax:
let varName : varType = initialValue;

Variables are therefore typed and must be defined
before first use.

3.5.2.3 Assignment

The binding operator <- is reused with the same
semantics (including automatic target-from-source
resolution) as an assignment operator. The simple
assignment operator := can be used when automatic
resolution is not required. Its left operand simply takes
the value of its right one.

An assignment is an instruction but not an expression.
The following instruction is therefore illegal:

myFunction (myVar <- ‘a string’);

3.5.2.4 Instances handling

Whereas instances are automatically created in
declarative rules, it is possible to explicitly create or
delete an object in an imperative block.
Instance creation uses the new operator:

let myClass UML!Class =
new UML!Class();

Removal of an instance is performed by the delete
operator:

delete myClass;
delete myClass.contents—->select (
ele.oclIsTypeOf (UML!Attribute)
)

The parameter of delete must be an element of a
target model or a collection of such elements, in which
case every element of the collection is deleted. Note that
the collection itself cannot be explicitly deleted since it is
only a runtime instance, which will not persist in any
target model. Such instances are often created in OCL
(such as in certain iterators), which assumes the
existence of a mechanism such as a garbage collector.

3.5.2.5 Conditional statements

OCL already provides an if-then-else construction. It is
however an expression and could be compared to the
ternary operator (condition ? if-true : 1if-
false) of languages such as C and Java.

Yet, we need a conditional instruction close in meaning
to the if statement in C or Java. The if statement in ATL
has the same syntax than in these languages:

if (conditionl) {
—-— if conditionl

} else if (condition2) {
-— 1f (not conditionl)
-— and condition2

} else {
-—— if
-— and

}

(not conditionl)
(not condition?2)

A switch statement is also defined, with broader
semantics (in comparison to its C or Java equivalent): the
expression on which the condition is tested can be non-
scalar. The first case with an expression having the
same result has the first one will have its instruction
block executed.

switch (expression) {
case expressionl:
—— 1f (expression = expressionl)
break;

10

case expression2:

-— 1if (expression <> expressionl)

—-— and (expression = expression2)
break;

default:

-— 1f (expression <> expressionl)

-— and (expression <> expression2)
break;

3.5.2.6 Loop statements

while and do while loop statements are defined
using the same syntax found in C or Java:

while (condition) {
—— while condition is true

}
and

do {

-— executed at least once and while
—— condition is true after that

} while (condition);

A loop statement iterating over the elements of a
collection is also defined:

foreach element in collection {

}

3.6 Graphical representation

ATL transformation models can be partially
represented using a graphical concrete syntax. Not
every language construction has a graphical
counterpart, only main ones. The primary idea behind
the existence of this syntax is that patterns of
declarative rules are often best apprehended when one
can actually see which elements of a meta-model are
involved.

However, the best way to represent OCL expressions
seems to be the standardized concrete syntax.
Consequently, neither filters of source patterns nor
bindings of target patterns can be drawn.

Figure 11 shows how the first of the two rules
presented in the previous section would be drawn. It is
a graphical representation of the types of the elements
composing the pattern recognized by the rule (a Class
here) as well as the types of the target elements (a
Table here) and the link between source and target
elements. The names of the variables holding the
references to these elements at runtime are also shown
inside the pins of the rule connected to the meta-model
elements. It is immediately obvious here that a Class
will be transform into a Table.

This syntax can be used to help understanding a
particular transformation, or even to assist its developer
who can then have a more global view of what he/she

is modelling. Besides, a modelling tool could provide a
GUI allowing a hybrid development alternating graphical
rule overview inner mechanism specification.

3.7 Some properties of the language

3.7.1 Directionality

In ATL, a transformation is unidirectional. We believe a
language designed so that every transformation model
can be applied in both directions would have limitations.
However, when a transformation model contains only
fully declarative rules, it should be possible to derive a
part of the symmetric transformation automatically,
depending on the complexity of the expressions used in
the bindings.

For instance, in a simple one-to-one mapping, the rule:

rule Class2Class {
from mc : MOF!Class
to
uc : UML!Class mapsTo mc (
uc.name <— mc.name
)
}

could be automatically derived into:

rule Class2Class {
from uc UML!Class
to
mc : MOF!Class mapsTo uc (
mc.name <-— uc.name
)
}

The conditions on a transformation model allowing an
automatic symmetrical transformation derivation are yet
to be defined. Once they are, a set of OCL constraints on
ATL transformation models could be specified to test
whether a particular model is reversible.

3.7.2 In-place transformations

The target model is always a new one in ATL, but a
special kind of ATL transformations has been given a
very close semantics to in-place transformations:

The source model is first copied to the target model and
then transformation rules are applied. Such a
transformation model can be thought as having a set of
implicit rules copying all elements (meta-model
dependant), and a set of explicit rules written by the
modeller.

3.7.3 Incremental transformations

ATL offers no direct support for incremental
transformations. However, we think some cases needing
such transformations could be implemented using
traceability. This is an area of ongoing resarch.

11

Transformation
model

Source
meta-model

Target
meta-model

Class2Table

lass tabE\
Table

Class

Figure 11 - Example of ATL graphical syntax

4. Transforming XSLT
XQuery

For the first experiments of ATL, we chose a
transformation between two languages of
transformation in the XML technological space. The
goal of this experiment is to prove the feasibility of the
XSLT2XQuery transformation in the MDA
technological space with ATL. In practice, we will
require import/export facilities and a composition of
transformations. The presentation of the
XSLT2XQuery transformation begins by presenting the
different meta-models used in the transformation. The
second sub-section presents the transformation process.
Finally the last section describes the XSLT2XQuery
transformation in the MDA technologic space.

into

4.1 Meta-models presentation

4.1.1 The XML meta-model

The XML meta-model is part of the bridge between the
XML TS and the MDA TS. We chose to use a meta-
model similar to the one proposed by NetBeans [23].
The XML meta-model presented on Figure 12
describes an XML document (Document) composed of
one root node (RootNode). Node is an abstract class
having two direct children ElementNode and
AttributeNode. ElementNode represents the tags, for
example a tag named xml: <xml></xml>,
ElementNodes can be composed of many Nodes.
AttributeNode represents attributes, which can be found
in a tag, for example the atfr attribute: <xml
attr="value of attr"/>. ElementNode has
two sub classes : RootNode and TextNode. The
TextNode is a particular node, which does not look like
a tag; this is only a string of characters.

XML |

Node
_{Szmﬂ@)% +name : String
0.. AN

nodes_parentNode

o [
parent%ode‘ ElementNode AttributeNode

+value : String

AN
]
+rootNo RootNode TextNode

+value : String

rootNode |document

0 +document

1 Document

+documentName : String

Figure 12 - XML meta-model

4.1.2 The XSLT meta-model

The XSLT meta-model that we wrote to perform the
transformation is an extension of the XML meta-model
(cf. Figure 12). The extension consists of classes
represented in grey on Figure 13. The main class is
called XSLTNode inheriting from ElementNode. The
XSLTNode class has sub classes representing XSLT
elements: xsl:apply-templates, xsl:template, xsl:if,
xsl:value-of. To keep the explanation simple, we ignore
several features like xsl:for-each, xsl:choose, xsl:sort,
xsl:copy-of elements; thit is why they are neither in the
meta-model nor in the transformation code.

XSLT
Node
{ordered) *hodes o
+ | +hame : String
nodes parentNode 0.. i
ElementNode AttributeNode
parentNode
+value : String
/N
RootNode TextNode XSLTNode
+value : String
FrootNode VAN
Zr rootNgde_document
XSLTRootNode @ Document
+document
+documentName : String
ApplyTemplates If Template ValueOf
+select : String +test : String +match : String +select : String

Figure 13 - XSLT meta-model

The name attributes of XSLT classes are set with the
name of the tag corresponding to the owner class. The

12

XML attributes of XSLT tags, for example select in an
xsl:value-of tag, are represented by UML class
attributes having the same name and typed as String.

4.1.3 The XQuery meta-model

An XQueryProgram is composed of
ExecutableExpression which can be FLWOR
expressions, function calls (FunctionCall) and function
declarations (FunctionDeclaration). The main class is
FLWOR, it represents FLWOR expressions which are
composed of For, Let, Where, Order by and Return
statements. For is composed of an XPath expression
representing the value stored by the variable defined by
the var attribute. Let is also composed of an XPath
expression representing the value stored by the variable
defined by the var attribute. Where is composed of a
boolean XPath expression used to do a selection on the
variables of the For statements. OrderBy is composed
of an XPath expression defining how to order the
output. Return is composed of expressions
representing the output data. Those expressions are
ExecutableExpressions, XML Nodes, ReturnXPath
expressions. The Node class and its sub classes are
copied from the XML meta-model. We choose to use
two different XPath classes, because the expressions
used in the refurn part are between braces in the textual
format of XQuery.

Quer]

_| 1.
XQueryProgram Expression

+nodes
§averyprogram -

0..

Node

+expression

ExcutableExpression

+expressions
1.

ElementNode AttributeNode
+value : String
reniNode

0.1

+unctionDeplaration
FLWOR FunctionCall FunctionDeclaration
+name : String +name : String
+unctionCall TextNode

ReturnXPath

JAN

For #’m
+tor_[svar - sting expression

expression | 2\ /Npririty

BooleanExp

Texpression

©orderBy OrderBy vmmrﬁy
+retum oo

&l
@

Figure 14 - XQuery meta-model

4.2 XSLT2XQuery transformation

In this sub section we define each step in the process of
the XSLT2XQuery transformation. We therefore offer a
process framework and the meta-model defining the
representation of mappings with associated semantics.

4.2.1 The transformation process

This section summarizes the different steps of the
transformation process illustrated in Figure 15 and
Figure 16. The XSLT2XQuery transformation is carried
out on instances of XSLT meta-model, and produces a
corresponding model based on the XQuery meta-model
(cf. Figure 14).

Before to tackle the XSLT2XQuery transformation in
the MDA technological space, it is necessary to perform
two first steps to get a usable XQuery model.

The first step (1) consists in bringing back the context
of work in the MDA technological space by importing an
XSLT document to a model based on the XML meta-
model. An ATL importer able to import XML document
into the MDA TS is used to perform this import. Indeed
an XSLT is an XML document. We then have a first
form of the XSLT in the MDA TS.

The second step (2) produces the wanted form of the
XSLT document. This form is a model based on the
XSLT meta-model. The second step is a transformation
called XML2XSLT written in ATL. XML2XSLT
consists of mapping each source model based on XML
meta-model into a target model based on XSLT meta-
model (cf. Figure 15). Firstly, it starts by copying the
XML elements, which are not XSLT tags. Secondly, the
transformation seeks and extracts the ElementNode
instances, which correspond to the XSLT nodes. Those
XSLT elements will be transformed into XSLT instances
(in grey on the meta-model of Figure 14.

The third step (3) is the key transformation:
XSLT2XQuery. This transformation consists of the
definition of relationship between expressions over the
two models, such as respecting the semantics and the
functionality of their formalisms. XSLT2XQuery is
detailed in the next subsection.

Import XML2XSLT

ATL ATL

XSLT
XML

XML
XMI

XSLT
XMI

Figure 15 - Steps (1) and (2) of the transformation
process

13

XSLT2XQuer Export

ATL XSLT

(3) 4)

XSLT
XMI

XQue
XMI

XSLT
Code

Figure 16 - Steps (3) and (4) of the transformation
process

The last step (4) exports the model resulting from
the XSLT2XQuery transformation into an XQuery
document (in the XML TS). In our tests we used XSLT
to perform the export. This XSLT transforms the XMI
serializations of the XQuery models into XQuery
expressions. Such transformations are really easy to
write when the meta-model is a good representation of
the grammar of the output.

The ATL framework automatically generates the
XMI serialization of each model present in the
transformation process. XMI is the format chosen to
store models read and written by transformation. This
is why XSLT can be used to perform an export. In fact
the export to the XML TS is done at the end of each
transformation by serializing models in XMI
documents. The last step of the XSLT2XQuery
transformation process is then a transformation in the
XML TS.

In the ATL framework, it is now possible to write
exporters to XML and textual technological spaces.
Those exporters are particular ATL transformations
composed of OCL expressions describing the way to
get the representation of the exported model. In this
case the exportation is really placed in the MDA space:
the XMI files, which store the exported models, are
loaded in the ATL engine.

4.2.2 The XSLT2XQuery transformation

To have an easily understandable transformation we
simplified a bit the input XSLT documents by adding
constraints.

The first one is that all the template tags must be
direct children of the root node. This constraint
simplifies the behavior of templates.

The second constraint is that the value of a select
attribute of an apply-template must only be a tag name
(it can not be an XPath expression). This constraint
hides the main difference between a template and a
function call. An apply-templates tag applies all
available templates to a set of elements and each
template treats only the elements that it is dedicated to.
Whereas a function call applies a function to a set of
elements; the test of the type of the elements must be
explicitly described in the function declaration. The
second constraint is useful to avoid describing this test.

The third constraint forces the XSLT programmer to
write a template matching to ’/’. To write this template
will force the XSLT programmer to explain how the
transformation must start. This information is necessary
to the XQuery program, because XQuery is partly an
imperative language: it describes the order of the
program execution.

If we would not respect the previous constraints the
transformation would also be writeable. We would just
have to do some more tests. For example to remove the
second constraint, we would have to generate XQuery
code that defines which function to call. The choice will
be done in function of the node names.

The transformation can be divided in three types of
rules:

* the rule used to create the XQuery expression

container which is an XQueryProgram instance
(the first rule),

* the rules used to copy XML elements (the two

last rules),

e the rules used to transform xs/ elements into

XQuery expressions (the other rules).
The source code of the transformation is in the appendix
of this document.

The first rule (cf. lines 4 to 30) creates five kinds of
elements and one instance for each kind:
XQueryProgram, FLWOR, For, XPath and Return. Each
of those instances is described by one output pattern
(respectively at lines: 7, 10, 16, 21, 25). The first output
pattern creates only an XQueryProgram instance. The
second describes the FLWOR instance. This output
pattern owns three ATL bindings. The first one explains
that the FLWOR instance is an expression of the
previously created XQueryProgram. The second and
third output pattern specifies that the for property and the
return property will be set with the instances generated
by the output pattern creating respectively For and
Return instances. As you can see on line 18, the For has
its expression property connected to an XPath instance.
This XPath expression defines the sub nodes of the root
one of the transformed XML document. This expression
is used to specify that the transformation begin at the root
of the documents. This start point is the equivalent of the
template matching to ’/°. The Return output pattern owns
a binding describing that the expression property
correspond to the output elements created by the
transformation of sub nodes of the XSLTRootNode. (The
_XSLT variable represents the XSLTRootNode.)

The following parts describe the XQuery equivalent
expression of each xs/ tag. The two first rules (cf. lines
32 to 76) are the more important. They describe how
template mechanisms can be converted into XQuery
expressions. To be brief, we can just say that
xsl:template tags are converted into function declarations
and xsl:apply-templates tags into function calls.

We transform xsl:template tags into function
declarations because a template is a set of ordered

14

instructions called from different parts of the program.
This definition is close to the definition of a function.
To imitate the mechanism of the template, the created
functions have a parameter, which describes the set of
elements on which the template performs.

The xsl: apply-templates tags are converted into
function calls. An xsl: apply-templates owns an
attribute describing the set of the elements on which the
template will apply. This information is stored in the
function parameter.

The rule starting at the line 32 describes the
elements, which are generated by the xsl:template
transformation. The main elements are instances of
FunctionDeclaration. The function name is the match
attribute value of the xsl:template prefixed with fct.
The expression property of FunctionDeclaration
instance refers to a FLWOR expression described in the
second output pattern. At the line 39, the right part of
the binding is a sequence of FLWOR elements from the
_Template rule. The specification of the sequence is
necessary because _Template represent an only element
and the meta-model specify that the expression
property is a set of elements. The lines 40 and 43
describe the fact that the FunctionDeclaration
instances are owned by the instance created by the
transformation of XSLTRootNode instance. The right
part of the binding describes XSLTRootNode instance
with an OCL expression getting the first element of the
set of all XSLTRootNode instances. We choose the first
element of the set because in an XSLT document there
is only one root node.

The rule on lines 64 to 71 describes the creation of a
function call: the name of the function is the value of
the select attribute (of the apply-templates node)
prefixed with fct (thanks to the second constraint
previously presented at the beginning of the sub
section) and the parameters property is bind to an
XPath instance, which is set with the value of the select
attribute prefixed with $var/. This is necessary
because the current node is not implicit in XQuery that
is why we need to use a variable. The $var variable is
used in every FLWOR expression to simulate the
current node. It and its value is defined in the For (or
in the Let) statement of each FLWOR expression.

The rule on lines 78 to 108 describes the
transformation of xsl:if tags into FLWOR expressions.
The where statement is used to do the if work: the test
expression of the xsl:if is copied in the XPath
expression connected to the Where instance. The
$var/ prefix is added to the XPath expression to
simulate the current node as explained previously. The
connection to the parent elements is done in parent
creation rule.

The rule starting at line 110 describes the
transformation of xsl:value-of tags into ReturnXPath
expressions. This rule consists of a copy of string
expressions and an addition of the $var/ prefix. This

is possible because navigation languages of the input
transformation and of the output transformation are the
same (XPath). If navigation languages had been different
the transformation would be more complicated, because
we would have to treat navigation expressions as
compositions of meta-model instances and not as strings.

The two last rules (cf. line 118 to the end) describe the
transformation of XML elements from the XSLT
documents. Those elements are just copied by the first
rule while the second one copies their attributes. The
discriminators of those rules test if the nodes are xs/
elements not to copy them. The helper called
isNotPredefined does this work.

4.2.3 An illustrative example

Figure 17 and Figure 18 present a test of the
transformation. On Figure 17 we can see the input
XSLT which extracts the employees having a salary
greater than 2000$ from an XML document storing
employees data. Figure 18 presents the output of the
transformation, which has been run and does the same
work than the XSLT with Qexo [20] implementation of
XQuery.

«xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/ Transform" >
«xsl:template match="/">

<emps>
«xsl:apply-templates select="employee"/>
</emps>
</xsl:template>
<xsl:template match="employee">
«xsl:if test="salary>2000">
<emp>
«xsl:value-of select="name"/>
«xsl:value-of select="firstname"/>
</emp>
</xsl:if>
</xsl:template>
</xsl:stylesheet>

Figure 17 - Test input : an XSLT file

define function fctemployee($paramVar)

for $var in $paramVar

return
let $var := $var
where $var/salary>2000
return

<emp>{$var/name{$var/firstname}</emp>
for $var in document("xmlFile.xml")/*

refurn
<emps>{fctemployee($var/employee)}</emps>

Figure 18 - Test output an XQuery file

5. Conclusion

Why inventing new transformation languages since we
already have Prolog or XSLT or even Java, Perl, and
Python that could be used for this purpose ? We hope
the material presented in this papermay partially hepl
answer some of these questions.

As announced at the beginning of this paper, the
application presented here is atypical of the model
engineering technology because not strictly situated
inside the MDA TS. This has been done on purpose
because we believe the MDA TS is not an island and
should be considered in relation to other TSs. Since the
XSLT processing of XMI serialized model had already
been tried, we have tackled here the reverse problem.
This shows that bridges between various TSs are not
symmetrical, but this does not come as a surprise.

Working at the boundary between two TSs is
important because we believe a transformation system
must be wider than a simple language and
corresponding engine. It should encompass a large
library of transformation components and also a set of
import-export facilities from/to other TSs.

We have learnt a lot during this work. First, since it
was a difficult and unconventional problem; it obliged
us to push the ATL language to some of its limits and
several aspects were improved. ATL is still evolving
because one of our main objectives is to make it
compliant with the result of the MOF/QVT
convergence recommendation when it is ready.

But we also hope to add many original features to
the ATL transformation system. We already knew that
being able to deal with a large hierarchical library of
transformation components is a must and that
corresponding browsing features should be available in
any practical transformation framework. We presently
know that we also need to provide a corresponding
library of import-export component between the MDA
and other TSs. Furthermore we understand that these
import-export components should absolutely be
specializable. An XML import-export component will
serve to deal with any other XML schemas as has been
done here for XSLT and XQuery. Similarly other
generic import-export components are being built, for
example another family based on EBNF to deal with
the TS of conventional programming languages.

One of the roles that should be played by any QVT-
compliant transformation language is to deal with
transformation legacy i.e. working transformations
expressed in other formalisms. The present work
illustrates one possibility to deal with this.

It is of paramount importance to compare and
classify the different transformation systems that are
being proposed for various emerging technologies. The
features, possibilities, characteristics, scope of
applicability, scalability, etc. of these systems should
be put in correspondence and seriously evaluated

(composability, extensibility, modularity mechanisms,
organization structure, tracing facilities, directionality,
etc.). An interesting initial evaluation is provided in [4].
Unfortunately this does not take into account proposals
that are outside the strict MDA QVT proposals. XML-
based, Java-based, Prolog-based, graph-transformation
systems, and many others should be compared because
they may often be used for the same tasks. This paper has
shown how important the notion of technological space
is, if we want to avoid sterile discussions. Furthermore
we have pushed the idea to its application, by building a
new bridge between the MDA and the XML TS, in the
reverse direction of the old bridge presented in [17] that
was operating in the opposite direction. We are presently
convinced that the notion of TS is not only an interesting
discussion idea, but an operational concept very useful to
the engineer that has a problem to solve and that does not
know beforehand which technology is the most suitable
to solve it.

We are also confident in the suitability of ATL for
many tasks, including non-conventional ones. As part of
the ongoing collaboration between ATLAS and TNI-
Valiosys, similar experiment are going to be conducted,
for example in domain of programming language (EBNF
import-export components).

During this presentation we pointed out some open
questions about transformation frameworks. Among
these, the traceability problem should have a good
position in the research agenda. Many other subjects
should also be mentioned as areas of ongoing research.
The possible expression of model weaving operations
(i.e. binding a business model to a platform definition
model in order to get a platform specific model) as a
sequence of transformation is an interesting and difficult
problem. More generally we are studying the potential
applications of defining higher order transformation in
ATL. Higher order transformations are transformations
taking other transformations taking other transformation
as input and/or producing other transformation as output.
Even if these possibilities are present in other TSs (with
XSLT for example), their particular interest seems yet
underestimated.

6. Acknowledgements

We thank Patrick Valduriez and the members of the
TRISKELL team and of the MOTOR activity in the
CARROLL project for multiple advices and comments
on this work.

7. References

[1] AndroMDA
http://www.andromda.org/pages/whatisit.html

[2] Badros, G. J. JavaML Documentation
http://www.cs.washington.edu/homes/gjb/JavaML/

[3] Bézivin, J.: From Object-Composition to Model-

16

MDA. TOOLS-
Barbara, USA2001

Transformation with the
USA’2001, Santa
http://www.sciences.univ-
nantes.fr/info/Irsg/Recherche/mda/TOOLS.USA.p
df

[4] Gardner, T., Griffin, C., Koehler, J., Hauser, R.:

Review of OMG MOF 2.0
Query/Views/Transformations ~ Submissions &
Recommendations towards. final Standard.

http://www.omg.org/docs/ad/03-08-02.pdf

[5] Gerber, A., Lawley, M., Raymond, K., Steel, J.,
Wood, A.: Transformation: The Missing Link of
MDA. ICGT 2002

[6] Jamda Java Model Driven
http://sourceforge.net/projects/jamda/

[71 Kniesel, G., Koch, H.: Static Composition of
Refactorings. University of Bonn, Submitted for
publication, April 2003

[8] Kurtev, 1., Bézivin, J., Aksit, M.,: Technological
Spaces: An Initial Appraisal. CooplS, DOA’2002
Federated Conferences, Industrial track, Irvine,
2002

[9] Langlois, B., Farcet, N., THALES
recommendations for the final OMG standard on
Query / Views / Transformations. OOPSLA 2003
“Generative Techniques in the context of Model
Driven Architecture” workshop, October 27, 2003
http://www.oopsla.org/oopsla2003/files/ws-3.html

[10]Lemesle, R.,: Transformation rules based on meta-
modeling. EDOC’98, San Diego, 3-5 November
1998 http://www.sciences.univ-
nantes.fr/info/lrsg/Pages_perso/RL/Publications/E
DOC98-lemesle.pdf

[11]Object Management Group: UML 2.0 OCL 2nd
revised submission. 2003
http://www.omg.org/docs/ad/03-01-07.pdf

[12]Object Management Group: OMG/MOF Meta
Object Facility (MOF) Specification. September
1997 http://www.omg.org/docs/ad/97-08-14.pdf

[13]Object Management Group: OMG/RFP/QVT
MOF 2.0 Query/Views/Transformations RFP.
October 2002, http://www.omg.org/docs/ad/02-

Architecture.

04-10.pdf
[14]Object Management Group: XML Model
Interchange (XMID). October 1998

http://www.omg.org/docs/ad/98-10-05.pdf

[15]OMG / MOF 2.0, Query / Views / Transformation
ad/2002-04-10, Revised Submission, Version 1.0,
2003/08/18, OpenQVT

[16]JOMG / SPEM. Software Process Engineering
Process Metamodel (SPEM). OMG Document
ad/formal/02-11-14, version 1.0, November 2002

[17]Peltier, M., Bézivin, J., Guillaume, G.: MTRANS:
A general framework, based on XSLT, for model
transformations. Workshop on Transformations in
UML (WTUML), Genova, Italy, April 2001
http://www.sciences.univ-

nantes.fr/info/lrsg/Pages perso/MP/pdf/wtuml 200 Appendix
1.pdf

[18]Ploquin, N.: Tooling the MDA framework: a new 1. module XSLT2Xquery:
software maintenance and evolution scheme 2. create OUT: XQuery from IN : XSLT;
proposal http://www.sciences.univ- 3.
nantes.fr/info/lrsg/Pages_perso/Publications/joop01. 4. rule XSLTRootNode2XQueryProgram {
5. from _XSLT : XSLTIXSLTRootNode (true)
ILdf 6. to
[19] Pottinger, R.A., Bernstein, P.A.: Merging Models 7 XQueryProgram : XQuery!XqueryProgram mapsTo
Based on Given Correspondences. University of 8. _XSLT,
Washington Technical Report UW-CSE-03-02-03, 9.
February 2003 10. FLWOR : XQuery!FLWOR (
[20]1Qexo - The GNU Kawa implementation of Xquery. i; :::‘:‘rﬂzr:gmm ¢ XQueryProgram,
http://www.gnu.org/software/qexo/ 13, returnc return
[21]Soley, R., and the OMG staff: Model-Driven 14,),
Architecture. OMG document Available from 15.
www.omg.org November 2000. 16 for: XQuerylFor (
[22] Velocity 13.1, The Apache Jakarta Project, 17. var<$var’, i
. . 18. expression <- forExpression
http://jakarta.apache.org/velocity/ 9)
[23] XML meta-model, netBeans.org, 20
http://mdr.netbeans.org/mdrxml.html 21, forExpression : XQuery!Xpath (
[24]World Wide Web Consortium: XSL 22. value <- 'document(\"xmlFile.xmlI\")/*'
Transformations (XSLT) Version 2.0. 23.)
http://www.w3.org/TR/xslt20/ 24.
. X 25. return: XQuery!Return (
[25]World Wide Web Consortium: XQuery 1.0: An 2. expressions < _XSLT nodes-select(
XML Query Language. 27. t|t.match= '/'
http:// www.w3.org/TR/xquery/ 28.)->collect(t|t.nodes)
29.)
30. }
31
32. rule Template2FLOWR {
33. from _Template: XSLT!Template (_Template.match <>
7
34, to
35.
36. functionDeclation : XQuery!FunctionDeclaration
37. mapsTo _Template(
38. name <- 'fct'+_Template.match,
39. expression <- Sequence{FLWOR},
40. xqueryProgram «<-
41, XSLTIXSLTRootNode.allInstances()->first(),
42.),
43.
44, FLWOR : XQuerylFLWOR (
45, for <- for,
46. return <- return
47.)
48.
49, for : XQuery!For (
50. expression <- forExpression,
51. var <- '$var'
52.),
53.
54, forExpression : XQuery!Xpath (
55. value <- '$paramVar'
56.).
57.

58. return: XQuery!Return (

h9. output <- _Template.nodes,

60. expressions <- _Template.nodes
61.)

62. }

63.

17

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.

111.

112.
113.
114.
115.
116.
117.
118.

119.
120

121.
122.
123.
124.
125.
126.
127.
128.
129.
130.

rule Apply Templates2FunctionCall {
from _ApplyTemplates : XSLT!Apply Templates(true)
to
functionCall : XQuery!FunctionCall
mapsTo _Apply Template(
name <-'fct'+Apply Templates.select,
parameters <- Sequence{parameter}

)

parameter : XQuery!XPath(
value <- '$var/' + _ApplyTemplates.select
)
}

rule If2FLWOR{
from _If: XSLTIIf(true)
to

FLWOR : XQuery!FLWOR mapsTo _If(
_let <- varlet,
where <- where,
return <- if

)

varlet : XQuerylLet(
expression <- letExpression,
varlet.var <- '$var'

)

letExpression : XQuery!XPath(
value <- '$var'

)

where : XQuery!Where(
expression <- whereExpression

).

whereExpression : XQuery!BooleanExp(
value <- '$var/' + _If test

)

return : XQuery!Return(
expressions <- _If.nodes
)
}

rule ValueOf2ReturnXPath {
from _ValueOf : XSLT!ValueOf(true)
to
XPath : XQuery!ReturnXPath mapsTo _ValueOf(
value <- '$var/' + _ValueOf select
)
}

rule ElementNode2ElementNode {
from _ElementNode : XSLTIElementNode(
XSLT2XQuery.isNotPredefined(_ElementNode)
)
to
elementNode : XQuery!ElementNode(
name <- _ElementNode.name,
output <- _ElementNode.nodes,
nodes <- _ElementNode.nodes
)
}

rule AttributeNode2AttributeNode {

18

131.
132.
133.
134.
135.
136.
137.
138.
139. }

from _AttributeNode : XSLTIAttributeNode(
XSLT2XQuery.isNotPredefined(_ElementNode)
)
to attributeNode : XQuery!AttributeNode
mapsTo _AttributeNode (
name <- _AttributeNode.name,
attributeNode.value <- _AttributeNode.value
)

