
Ideas for a Concrete Visual Syntax for
Model-to-Model Transformations

Jorn Bettin
jorn.bettin@softmetaware.com

SoftMetaWare
PO Box 617

 Waiheke Island
Auckland, New Zealand

ABSTRACT
The recent OMG work on Queries, Views and Transformations
(QVT) has led to five proposals that contain suggestions for
notations for model-to-model transformations. This work is a
valuable foundation, but the success of the MDA initiative and of
QVT in particular will depend on the availability of a concrete
syntax for model-to-model transformations that is able to express
non-trivial transformations in a clear and compact format. This
paper investigates model-to-model transformations from a user's
perspective, i.e. it presents ideas for a concrete syntax that would
be useful for industrial production of business software.

Keywords
model-to-model transformation, meta modeling, domain-specific
modeling, template language.

1. INTRODUCTION
In commercial software development the need for model-to-

model transformation arises out of the desire to improve the
clarity of transformation specifications, which typically are
written in some kind of a textual template language. Anyone who
has used template languages extensively to automate the
generation of implementation code from highly abstract models
will know that currently there is no standard paradigm for
template code management. The wider the gap in the level of
abstraction between source model and target implementation code,
the more template readability and maintainability suffers.

In [9] and [10] we argue that despite these issues, it is still
preferable to use template languages to automate model-to-text
transformations rather than to leave the translation from model to
implementation as a fully manual activity. This does not mean
that there is no room for improvement. Hence the focus on model-
to-model transformations, which allows to split a complex
transformation into (A) a set of model-to-model transformations
that map model elements of the source Platform Independent
Model to model elements of the target Platform Specific Model
and (B) simple model-to-text transformations that map the
Platform Dependent Model onto the concrete syntax of
implementation languages. In contrast of PIM-to-Text
transformations, PSM-to-Text transformations can easily be

expressed using a textual template language. In a nutshell the idea
is to resolve complex one-to-many mappings in a partially visual
language for model-to-model transformations, which significantly
simplifies the subsequent PSM-to-Text transformations.

In what way do the QVT transformations represent a step
forward?

• The QVT submission by DSTC/IBM/CBOP [2] only
defines a non-visual syntax for model-to-model
transformations, and therefore is similar to various text-
based template languages for model-to-text
transformations.

• The submission by Alcatel/Softeam/Thales/TNI-
Valiosys/Codagen Technologies Corp [3] provides a
visual notation for the assembly of "QVT components"
into a chain of transformations. As far as we can see,
"QVT components" are intended to be coarse-grained
transformations such as a transformation from UML to
a relational SQL model. The visual syntax does not
cover the detailed specification of how model elements
in the source model are mapped onto model elements in
the target model.

• The submission by Compuware Corporation/SUN
Microsystems [4] sketches a verbose visual notation for
transformations that is similar to UMLX.

• The submission by the QVT Partners (Artisan
Software/Colorado State University/Kinetium/King’s
College London/University of York) [5] defines in detail
a verbose visual notation for transformations that is
similar to UMLX.

• The submission by Interactive Objects Software
GmbH/Project Technology, Inc. [6] and [7] provides no
visual syntax for transformations.

This paper is not a research paper. Its main intention is to
highlight practical issues that are not addressed by the QVT
submissions, and to outline ideas for resolving these practical
issues. The ideas presented in this paper will be developed further
as part of the Generative Model Transformer project [8].



2. MODEL TRANSFORMATIONS AS
FIRST-CLASS VISUAL MODELS

Model transformations involve matching patterns from a source
model onto corresponding patterns in a target model. In [11] we
introduce the term "texture" to denote patterns expressed in a
precise UML-based format. Textual template languages allow the
expression of patterns in textual source code. If a textual template
language is used to map directly from one highly abstract PIM to
textual source code, then the structure of the PIM is "drowns" in
the textual template code, which is structured along the lines of
[textual] implementation code.

Visual notations for transformations have the advantage of
being able to represent patterns of the source model and patterns
of the target model in a single diagram, and even to represent the
mapping between source and target model elements in the same
diagram. This is the main motivation behind visual languages such
as UMLX [12] and others suggested in the QVT submissions. In
practice however, all the currently proposed visual notations have
the drawback of being quite verbose, which means that any non-
trivial transformation ends up being scattered across a multitude of
diagrams, and it becomes questionable whether the result is really
better structured than transformations expressed in a textual
template language.

If the syntax for model transformations is too verbose or not
intuitive, the wider software development community will not
buy into the whole concept, and model transformations will
remain on the fringes of software development. We have to learn
from what works in practice, such as UML class diagrams. Class
diagrams are popular and they "work" because they offer users the
right balance between textual and graphical notation, and even give
the user a choice between textual and graphical notation - such as
containment associations vs. attributes. In a class diagram, within
one class "box" the user can capture at least three levels of
containment:

1. attributes and operations,

2. operation parameters,

3. parameter details such as name and type.

In a good notation for transformations we need to use similar
techniques to keep the number of graphical constructs (boxes and
lines) from exploding. In practice, in most cases where there is
some form of containment in the source model of the
transformation, there will be a corresponding form of containment
in the target model.

3. A COMPACT NOTATION FOR META
MODELLING
If we want to arrive at a compact and practical visual notation for
model transformations, we need to be able to

• represent non-trivial patterns of source and target models in a
single diagram

• leverage the compactness of textual template languages for
the expression of mappings between source and target model
elements.

Normally, if the UML is used for meta modeling, each model
element of a meta model is explicitly represented as a class. Why
not learn from UML class diagrams and decrease the verbosity of
meta models by optionally expressing containment by physically
including the contained model elements in the class "box"
representing the aggregate? Figures 1 and 2 show the two examples
meta models similar to the ones that have been used extensively in
the QVT submissions, using a notation that relies on the following
concepts:

• VLIST() is used to indicate that a set of model elements is
contained within an aggregate in the form of a vertical list -
such as the attributes or operations section within a standard
UML class "box".

• HLIST() is used to indicate that a set of model elements is
contained in a horizontal list - such as the parameters in the
signature of an operation in a standard UML class "box".

• Within a list, elements are comma-separated, and to keep the
notation as compact as possible, the type of a modeling
element is by default assumed to be String. Contained
modeling elements of non-string type can be defined by using
<model element name><space><model element type name>.

• Brackets are used to indicate nested containment within
horizontal lists. How far to make use of this concept should
be up to the user, i.e. the notation does not dictate the
visual/textual balance.

Figure 1 - Simple UML Meta Model



Figure 2 - Simple RDBMS Meta Model

Besides leading to compact meta models, the suggested notation
allows the user to influence the physical design of domain specific
modeling notations with a very simple and readable syntax. This is
a nice side effect, the main advantage of the notation however is
the textual notation for containment, which provides an
opportunity to leverage textual template language concepts for the
expression of the details of model transformations.

4. VISUAL REPRESENTATION OF
MODEL-TO-MODEL TRANSFORMATIONS
A visual representation of model-to-model transformations can be
achieved by depicting the meta models of source and target using
the notation described in the previous section and then

• Using links between source and target meta model elements
to indicate the creation of target model element instances as
required by the transformation

• In the target model elements, adding transformation
specifications by using OCL and an appropriate textual
template language to map source model element instances
onto target model element instances.

Figure 3 shows the example of transforming a simple UML model
into a simple RDBMS model.

Figure 3 - UML to RDBMS Transformation

5. OUTLOOK
The QVT submissions have resulted in several proposed textual
notations for model transformations. We believe that the most
promising path to a practically useful notation is
• to use a visual notation to specify the creation of elements in

the target model;
• to use a combined visual/text-based notation for modeling

containment in meta models as suggested in this paper, such
that the number of "boxes" does not explode;

• to leverage the proposed meta modeling notation, the OCL
standard, and template language concepts to minimize the
verbosity of model-to-model transformations.

…

6. REFERENCES
[1] Model Driven Architecture. www.omg.org/mda/

[2] DSTC/IBM http://www.omg.org/docs/ad/03-08-03.pdf

[3] OpenQVT http://www.omg.org/docs/ad/03-08-05.pdf

[4] XMOF http://www.omg.org/docs/ad/03-08-07.pdf

[5] QVT Partners http://www.omg.org/docs/ad/03-08-08.pdf

[6] IO/PT http://www.omg.org/docs/ad/03-08-11.pdf

[7] IO/PT examples http://www.omg.org/cgi-bin/apps/doc?ad/03-
08-13.zip

[8] Generative Model Transformer http://www.eclipse.org/gmt/

[9] J. Bettin. Raising the level of abstraction of design models.
OOPSLA 2001 Companion, (October 2001).

[10] Bettin, J.: Measuring the Potential of Domain-Specific
Modeling Techniques. Proceedings of the Second Domain-
Specific Modeling Languages Workshop, OOPSLA, Working
Papers W-334. Helsinki School of Economics, (2002), 39-44,
http://www.cis.uab.edu/info/OOPSLA-
DSVL2/Papers/Bettin.pdf

[11] 4. Bettin, J.: A Language to Describe Software Texture in
Abstract Design Models and Imple-mentation. Computer
Science And Information Systems Reports TR-26, OOPSLA
Workshop on Domain-Specific Visual Languages. University
of Jyväskylä, (2001), 1-9,
http://www.isis.vanderbilt.edu/OOPSLA2K1/Papers/Bettin.
pdf

[12] Edward Willink, “The UMLX Language Definition”,
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-
home/doc/umlx/umlx.pdf.


